首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Instantaneous oxygen consumption, muscle potential frequency, thoracic and ambient temperature were simultaneously measured during heating in individual workers and drones of honey bees. Relationships between these parameters and effects of thoracic temperature on power input and temperature elevation were studied. Oxygen consumption increased above basal levels only when flight muscles became active. Increasing muscle potential frequencies correlated with elevated oxygen consumption and raised thoracic temperature. The difference between thoracic and ambient temperature and oxygen consumption were linearly related. Oxygen consumption per muscle potential (l O2 · g –1 thorax · MP–1) was two-fold higher in drones than in workers. However, oxygen consumption for heating the thorax (l O2 · g –1 thorax · (Tth-Ta) · °C–1) was nearly the same in workers and drones. Thoracic temperature affected the amount of oxygen consumed per muscle potential (R10=1.5). Achieved temperature elevation per 100 MP was more temperature sensitive in drones (R10=6–10) than in workers (R10=3.6). Q10 values for oxygen consumption were 3 in workers and 4.5–6 in drones. Muscle potential frequency decreased with a Q10=1.8 in workers and 2.7 in drones. Heating behaviour of workers and drones was different. Drones generated heat less continuously than workers, and showed greater interindividual variability in predilection to heat. However, the maximal difference between ambient and thoracic temperature observed was 22 °C in drones and 14 °C in workers, indicating greater potential for drones.Abbreviations DL dorsal-longitudinal muscle - DV dorsoventral muscle - MP muscle potential - T a ambient temperature - T th thoracic temperature  相似文献   

2.
To gain information on extended flight energetics, quasi-natural flight conditions imitating steady horizontal flight were set by combining the tetheredflight wind-tunnel method with the exhaustion-flight method. The bees were suspended from a two-component aerodynamic balance at different, near optimum body angle of attack and were allowed to choose their own speed: their body mass and body weight was determined before and after a flight; their speed, lift, wingbeat frequency and total flight time were measured throughout a flight. These values were used to determine thrust, resultant aerodynamic force (magnitude and tilting angle), Reynolds number, total flight distance and total flight impulse. Flights in which lift was body weight were mostly obtained. Bees, flown to complete exhausion, were refed with 5, 10, 15 or 20 l of a 1.28-mol·l-1 glucose solution (energy content w=18.5, 37.0, 55.5 or 74.0 J) and again flown to complete exhaustion at an ambient temperature of 25±1.5°C by a flight of known duration such that the calculation of absolute and relative metabolic power was possible. Mean body mass after exhaustion was 76.49±3.52 mg. During long term flights of 7.47–31.30 min similar changes in flight velocity, lift, thrust, aerodynamic force, wingbeat frequency and tilting angle took place, independent of the volume of feeding solution. After increasing rapidly within 15 s a more or less steady phase of 60–80% of total flight time, showing only a slight decrease, was followed by a steeper, more irregular decrease, finally reaching 0 within 20–30 s. In steady phases lift was nearly equal to resultant aerodynamic force; tilting angle was 79.8±4.0°, thrust to lift radio did not vary, thrust was 18.0±7.4% of lift, lift was somewhat higher/equal/lower than body mass in 61.3%, 16.1%, 22.6% of all totally analysable flights (n=31). The following parameters were varied as functions of volume of feeding solution (5–20 l in steps of 5 l) and energy content. (18.5–74.0 J in steps of 18.5 J): total flight time, velocity, total flight distance, mean lift, thrust, mean resultant aerodynamic force, tilting angle, total flight impulse, wingbeat frequency, metabolic power and metabolic power related to body mass, the latter related to empty, full and mean (=100 mg) body mass. The following positive correlations were found: L=1.069·10-9 f 2.538; R=1.629·10-9 f 2.464; P m=7.079·10-8 f 2.456; P m=0.008v+0.008; P m=18.996L+0.022; P m=19.782R+0.021; P m=82.143T+0.028; P m=1.245·bm f 1.424 ; P mrel e=6.471·bm f 1.040 ; =83.248+0.385. The following negative correlations were found: V=3.939–0.032; T=1.324·10-4–0.038·10-4. Statistically significant correlations were not found in T(f), L(), R(), f(), P m(bm e), P m rel e(bm e), P m rel f(bm e), P m rel f(bm f).Abbreviations A(m2) frontal area - bl(m) body length - bm(mg) body mass - c(mol·1-1) glucose concentration of feeding solution - c D (dimensionless) drag coefficient, related to A - D(N) drag - F w(N) body weight - F wp weight of paper fragment lost at flight start - f wingbeat frequency (s-1) - g(=9.81 m·s-2) gravitational acceleration - I(Ns)=R(t) dt total impulse of a flight - L(N) lift vertical sustaining force component - P m(J·s-1=W) metabolic power - Pm ret (W·g-1) metabolic power, related to body mass - R(N) resultant aerodynamic force - Re v·bl·v -1 (dimensionless) Reynolds number, related to body length - s(m) v(t) dt virtual flight distance of a flight - s(km) total virtual flight distance - T (N) thrust horizontal force component of horizontal flight - T a (°C) ambient temperature - t(s) time - t tot (s or min) total flight time - v(m·s-1) flight velocity - v(l) volume of feeding solution - W (J) energy and energy content of V - ( °) body angle of attack between body longitudinal axis and flow direction - ( °) tilting angle ( 90°) between R and the horizont in horizontal flight v(=1.53·10-5m2·s-1 for air at 25°) kinematic viscosity - (=1.2 kg·m-3 at 25°C) air density  相似文献   

3.
The effect of temperature on the respiration rate of meiofauna   总被引:2,自引:0,他引:2  
R. Price  R. M. Warwick 《Oecologia》1980,44(2):145-148
Summary The effect of temperature on respiration rate has been established, using Cartesian divers, for the meiofaunal sabellid polychaeteManayunkia aestuarina, the free-living nematodeSphaerolaimus hirsutus and the harpacticoid copepodTachidius discipes from a mudflat in the Lynher estuary, Cornwall, U.K. Over the temperature range normally experienced in the field, i.e. 5–20° C the size-compensated respiration rate (R c) was related to the temperature (T) in °C by the equation Log10 R c=-0.635+0.0339T forManayunkia, Log10 R c=0.180+0.0069T forSphaerolaimus and Log10 R c=-0.428+0.0337T forTachidius, being equivalent toQ 10 values of 2.19, 1.17 and 2.17 respectively. In order to derive the temperature response forManayunkia a relationship was first established between respiration rate and body size: Log10 R=0.05+0.75 Log10 V whereR=respiration in nl·O2·ind-1·h-1 andV=body volume in nl.TheQ 10 values are compared with values for other species derived from the literature. From these limited data a dichotomy emerges: species with aQ 102 which apparently feed on diatoms and bacteria, the abundance of which are subject to large short term variability, and species withQ 101 apparently dependent on more stable food sources.  相似文献   

4.
The passive membrane properties of the tangential cells in the fly lobula plate (CH, HS, and VS cells, Fig. 1) were determined by combining compartmental modeling and current injection experiments. As a prerequisite, we built a digital base of the cells by 3D-reconstructing individual tangential cells from cobalt-stained material including both CH cells (VCH and DCH cells), all three HS cells (HSN, HSE, and HSS cells) and most members of the VS cell family (Figs. 2, 3). In a first series of experiments, hyperpolarizing and depolarizing currents were injected to determine steady-state I-V curves (Fig. 4). At potentials more negative than resting, a linear relationship holds, whereas at potentials more positive than resting, an outward rectification is observed. Therefore, in all subsequent experiments, when a sinusoidal current of variable frequency was injected, a negative DC current was superimposed to keep the neurons in a hyperpolarized state. The resulting amplitude and phase spectra revealed an average steady-state input resistance of 4 to 5 M and a cut-off frequency between 40 and 80 Hz (Fig. 5). To determine the passive membrane parameters R m (specific membrane resistance), R i (specific internal resistivity), and C m (specific membrane capacitance), the experiments were repeated in computer simulations on compartmental models of the cells (Fig. 6). Good fits between experimental and simulation data were obtained for the following values: R m = 2.5 kcm2, R i = 60 cm, and C m = 1.5 F/cm2 for CH cells; R m = 2.0 kcm2, R i = 40 cm, and C m = 0.9 F/cm2 for HS cells; R m = 2.0 kcm2, R i = 40 cm, and C m = 0.8 F/cm2 for VS cells. An error analysis of the fitting procedure revealed an area of confidence in the R m -R i plane within which the R m -R i value pairs are still compatible with the experimental data given the statistical fluctuations inherent in the experiments (Figs. 7, 8). We also investigated whether there exist characteristic differences between different members of the same cell class and how much the exact placement of the electrode (within ±100 m along the axon) influences the result of the simulation (Fig. 9). The membrane parameters were further examined by injection of a hyperpolarizing current pulse (Fig. 10). The resulting compartmental models (Fig. 11) based on the passive membrane parameters determined in this way form the basis of forthcoming studies on dendritic integration and signal propagation in the fly tangential cells (Haag et al., 1997; Haag and Borst, 1997).  相似文献   

5.
Summary The present study addresses the controversy of whether the reduction in energy metabolism during torpor in endotherms is strictly a physical effect of temperature (Q10) or whether it involves an additional metabolic inhibition. Basal metabolic rates (BMR; measured as oxygen consumption, ), metabolic rates during torpor, and the corresponding body temperatures (T b) in 68 mammalian and avian species were assembled from the literature (n=58) or determined in the present study (n=10). The Q10 for change in between normothermia and torpor decreased from a mean of 4.1 to 2.8 with decreasingT b from 30 to <10°C in hibernators (species that show prolonged torpor). In daily heterotherms (species that show shallow, daily torpor) the Q10 remained at a constant value of 2.2 asT b decreased. In hibernators with aT b<10°C, the Q10 was inversely related to body mass. The increase of mass-specific metabolic rate with decreasing body mass, observed during normothermia (BMR), was not observed during torpor in hibernators and the slope relating metabolic rate and mass was almost zero. In daily heterotherms, which had a smaller Q10 than the hibernators, no inverse relationship between the Q10 and body mass was observed, and consequently the metabolic rate during torpor at the sameT b was greater than that of hibernators. These findings show that the reduction in metabolism during torpor of daily heterotherms and large hibernators can be explained largely by temperature effects, whereas a metabolic inhibition in addition to temperature effects may be used by small hibernators to reduce energy expenditure during torpor.Abbreviation BMR basal metabolic rate  相似文献   

6.
Summary The passive electrical properties and initiation of action potentials have been examined in the external epithelium of oikopleurid larvacean tunicates. The epithelial cells are electrically coupled, and are polygons up to 200 m across and up to 1.4–2.8 m thick. Membrane constants determined by a 2-electrode study were forO. dioica:: 922 m; Rm: 4.3 kcm2; Ri: 82.7 cm. Corresponding values for the largerO. longicauda were: 3350 m; 35.6 kcm2; and 104.5 cm. Mean resting potentials in both species were around 80 mV. Mechanical stimulation evokes over-shooting action potentials propagated (at 18 °C) at some 40 cm/s. These are rapid events, repolarisation being almost complete in 5 ms. There is no undershoot.When the recording electrode penetrates the epithelial cell from its inner surface distant mechanical stimulation may evoke similar action potentials arising from the stimulus site, but more often evokes graded small depolarisations which give rise to action potentials with increasing strength of mechanical stimulation. Reasons are given for considering these to be generator potentials resulting from deformation of the outer epithelial cell membrane by the tip of the recording electrode. The effects of epithelial action potentials upon the potentials recorded from the caudal muscle cells are briefly described.  相似文献   

7.
Summary Frequencies of scaphognathite (ventilatory,f sc) and heart (f h) pumping, oxygen consumption ( ), and hemolymph oxygen, carbon dioxide and pH levels were measured in adult Dungeness crabs (Cancer magister) during 7–10 day periods of exposure to 7, 12, and 17°C seawater. Ventilation volume ( ) was calculated for individual animals fromf sc and a previously determined relationship between stroke volume and animal mass. increases (Q10=2.3) with temperature were associated with larger increases inf sc (Q10=3.3) and (Q10=3.5) and smaller increases inf h (Q10=1.5). The incidence of unilateral scaphognathite pumping and pausing decreased as temperature rose.Postbranchial oxygen tension was maintained in vivo but hemolymph oxygen content decreased both in vivo and in vitro as temperature rose. Postbranchial carbon dioxide tension did not change significantly but relative alkalinity was maintained as temperature rose by loss of hemolymph bicarbonate. The effects of increased ventilation volume and potential mechanisms of bicarbonate regulation are discussed.The responses of the essentially subtidalCancer magister are compared with those of subtidal, intertidal and terrestrial crabs demonstrating that the concepts of acid-base regulation developed for water and air breathing vertebrates are also applicable to water and air breathing crabs, and that intertidal crabs may exhibit transitional states.This work was supported by Grant No. A.5762 National Research Council of Canada  相似文献   

8.
Summary Electrical membrane properties of the cellular slime moldDictyostelium discoideum were investigated with the use of intracellular microelectrodes. The rapid potential transients (1 msec) upon microelectrode penetration of normal cells had a negative-going peak-shaped time course. This indicates that penetration of a cell with a microelectrode causes a rapid depolarization, which can just be recorded by the microelectrode itself. Therefore, the initial (negative) peak potential transient valueE p (–19 mV) should be used as an indicator of the resting membrane potentialE m ofD. discoideum before impalement, rather than the subsequent semistationary depolarized valueE n (–5 mV). Using enlarged cells such as giant mutant cells (E p=–39 mV) and electrofused normal cells (E p=–30 mV) improved the reliability ofE p as an indicator ofE m. From the data we concluded thatE m ofD. discoideum cells bathed in (mm) 40 NaCl, 5 KCl and 1 CaCl2 is at least –50 mV. This potential was shown to be dependent on extracellular potassium. The average input resistanceR i of the impaled cells was 56 M for normalD. discoideum. However, our analysis indicates that the membrane resistance of these cells before impalement is >1 G. Specific membrane capacitance was 1–3 pF/cm2. Long-term recording of the membrane potential showed the existence of a transient hyperpolarization following the rapid impalement transient. This hyperpolarization was associated with an increase inR i of the impaled cell. It was followed by a depolarization, which was associated with a decrease inR i. The depolarization time was dependent on the filling of the microelectrode. The present characterization of the electrical membrane properties ofDictyostelium cells is a first step in a membrane electrophysiological analysis of signal transduction in cellular slime molds.  相似文献   

9.
On photoautotrophically grown, suspension-cultured cells of Chenopodium rubrum L. the electrical potential difference V mand the electrical resistance across plasmalemma and tonoplast have been measured using one or two intracellular micro-electrodes. In a mineral test-medium of 5.8 mM ionic strength V mvalues between 100 and 250 mV, 40% thereof between 170 and 200 mV, and a mean value (±S.E.M.) of 180.6±3.4 mV have been recorded. The average membrane input resistance R mwas 269±36 M, corresponding to an average membrane resistivity r mof 3.0 m2. V mand r mare sensitive to light, temperature, and addition of cyanide, suggesting the presence of an electrogenic hyperpolarizing ion pump, and are ascribed essentially to the plasmalemma. A hexose-specific saturable electrogenic membrane channel is identified through a decrease of V mand r mupon addition of hexoses. The hexoseconcentration-dependent depolarization V msaturates at 92 mV and returns half-saturating concentrations (apparent k mvalues) of 0.16 mM galactose, 0.28 mM glucose, and 0.48 mM fructose. The magnitude of V mand r mwell agrees with pertinent data from mesophyll cells in situ (where only V mdata are available) and from photoautotrophic lower plant cells. However, V mis markedly higher than reported for heterotrophically grown suspension cells of different higher plants (with which r mdata have not been reported so far). It is concluded from the present study and a companion paper on water transport (Büchner et al., Planta, in press) that photoautotrophically grown Chenopodium suspension cells closely resemble mesophyll cells as to cell membrane transport properties.Abbreviations V m membrane potential(mV) - R o input resistance () - R m membrane input resistance () - r m specific resistance (resistivity) of the membrane (m2)  相似文献   

10.
Summary A new assay for membrane fusion, using the fluorescent probe pyrene-sulphonyl-phosphatidyl ethanolamine, has been developed. Fusion between the envelope of Sendai virus and human erythrocytes or Lettre cells has a Q10 of 4 at 37° C, increasing to 7 at 7 ° C; there is no lag to onset of fusion. Viral neuraminidase has a Q10 of 2.3 between 37° C and 4° C. Its action limits the extent of fusion by causing the elution of virus; this effect is particularly marked at low temperature because of the difference in Q10 for fusion and neuraminidase. The temperature-dependence of the initiation of permeability changes following the removal of inhibitory amounts of Ca2+ is 2; thus membrane fusion is the principal temperature-sensitive step during the permeabilization of cells by Sendai virus. A recovery process, by which cells become insensitive to the removal of Ca2+ and which therefore limits the extent of permeabilization, has a Q10 of 7.4 between 37° C and 21° C. It is concluded that the lag to onset of permeability changes is not due to a lag in virus-cell membrane fusion, but to the gradual acquisition of a threshold level of membrane damage; the extent of permeabilization depends on the rate of fusion relative to the rates of neuraminidase and recovery.  相似文献   

11.
H. M. Behrens  D. Gradmann 《Planta》1985,163(4):453-462
Electrical transmembrane potential differences and resistances in different tissues of intact root tips of Lepidium sativum L. were investigated in a humid atmosphere by conventional glass-microelectrode techniques with the reference electrode at the surface (apoplast) of the root. The resting potential (inside negative) in cells of the root cap rose from-80 mV in external cell layers (secretion cells) to approx.-140 mV in central cells (statocytes). Measurements of the electric input resistance within the apoplast of the root tip (calyptra, meristem and elongation zone) yielded a preference for longitudinal contact (resistance per length of tissue approx. 3.4 GOhm m-1) compared with transversal contact (approx. 14 GOhm m-1). Similarly, the symplastic coupling expressed as the characteristic length (L) where a signal is reduced to 1/c compared with the origin yielded L y =390 m in the longitudinal (y) direction and L x =140 m in the transversal (x) direction. Cable analytical treatment of the symplastic input resistances (approx. 10 MOhm) resulted in low membrane resistances in the y-direction at the ends of cells compared with the membrane resistances in the x-direction (approx. 0.2 Ohm m2) of the lateral membranes in the approximately cylindrical cells. This anisotropy is discussed in terms of model calculations. The resistivity of the symplast was calculated to be about 2.5 Ohm m. The input current-voltage relationship displayed a slight curvature with increasing slope for the more negative membrane potential typical of membranes with electrogenic pumps. Even after massive electrical stimulation in the range from-50 to-150mV carried out to trace current-voltage curves, electrical excitations (action potentials) were not detected in the cells investigated.Abbreviations el voltage recording electrodes - R resistance - V r resting potential  相似文献   

12.
Summary Open-system infra red gas analysis was used to measure the CO2 output throughout a year of four species of earthworm. The respiratory quotients (R.Q.s) of the four species were determined by means of a Warburg apparatus and it was found that they varied with season. In some instances R.Q.s did not fall within the expected range of 0.7 to 1.0 and the low values were attributed to calciferous gland activity and the fixation of metabolic CO2.The results from CO2 output measurements at 10°C and R.Q.s were used to calculate oxygen uptake, this varied seasonally but the mean annual values at 10°C for adult, large immature and small immature A. rosea were 64.17, 72.66 and 78.56 l O2 g-1 fresh wt h-1 respectively. Mixed size groups of L. castaneus had a mean annual oxygen consumption at 10°C of 155.83 l O2 g-1 fresh wt h-1 and equivalent values for D. rubida and O. cyaneum were 112.02 and 69.35 l O2 g-1 fresh wt h-1. The apparent relationship between a high respiratory rate per unit weight and a litter dwelling habit (e.g. L. castaneus and D. rubida) disappeared when allowance was made for the weight of gut contents. Mean annual values for oxygen uptake in l O2 g-1 gut free fresh wt h-1 at 10°C were L. castaneus (194.79), D. rubida (142.22), A. rosea (95.70) and O. cyaneum (139.28). No size specific metabolism could be demonstrated either within or between species, this is believed to be correlated with the different levels of activity shown by different species and their life stages.Rates of oxygen consumption per unit weight for A. rosea were shown to be proportional to ambient temperature. Q 10 slopes of this relation, between 6 and 15°C, were higher for large immature A. rosea (2.42) and small immatures (1.96) than for adult clitellate worms (1.42). The mean Q 10 relationship for all size classes of A. rosea was 1.93 over the same temperature range and the equivalent value for cocoons was 1.63. The relationship between the oxygen consumption rate of all size classes of A. rosea and ambient temperature was not significantly affected by acclimatisation at 5 and 10° C prior to measurements being made at 6, 10 and 15° C.  相似文献   

13.
Divalent cation (Mn2+, Ca2+) entry into rat parotid acinar cells is stimulated by the release of Ca2+ from the internal agonist-sensitive Ca2+ pool via a mechanism which is not yet defined. This study examines the effect of temperature on Mn2+ influx into internal Ca2+ pool-depleted acini (depl-acini, as a result of carbachol stimulation of acini in a Ca2+-free medium for 10 min) and passive 45Ca2+ influx in basolateral membrane vesicles (BLMV). Mn2+ entry into deplacini was decreased when the incubation temperature was lowered from 37 to 4°C. At 4°C, Mn2+ entry appeared to be inactivated since it was not increased by raising extracellular [Mn2+] from 50 m up to 1 mm. The Arrhenius plot of depletion-activated Mn2+ entry between 37 and 8°C was nonlinear, with a change in the slope at about 21°C. The activation energy (Ea) increased from 10 kcal/mol (Q10=1.7) at 21–37°C to 25 kcal/mol (Q10=3.0) at 21-8°C. Under the same conditions, Mn2+ entry into basal (unstimulated) cells and ionomycin (5 m) permeabilized depl-acini exhibit a linear decrease, with E a of 7.8 kcal/mol (Q10=1.5) and 6.2 kcal/mol (Q10 < 1.5), respectively. These data suggest that depletion-activated Mn2+ entry into parotid acini is regulated by a mechanism which is strongly temperature dependent and distinct from Mn2+ entry into unstimulated acini.As in intact acini, Ca2+ influx into BLMV was decreased (by 40%) when the temperature of the reaction medium was lowered from 37 to 4°C. Kinetic analysis of the initial rates of Ca2+ influx in BLMV at 37°C demonstrated the presence of two Ca2+ influx components: a saturable component, with K Ca =279 ± 43 m, Vmax = 3.38 ± 0.4 nmol Ca2+/mg protein/min, and an apparently unsaturable component. At 4°C, there was no significant change in the affinity of the saturable component, but Vmax decreased by 61% to 1.3 ± 0.4 nmol Ca2+/mg protein/min. There was no detectable change in the unsaturable component. When BLMV were treated with DCCD (5 mm) or trypsin (1100, enzyme to membrane) for 30 min at 37°C there was a 40% decrease in Ca2+ influx. When BLMV were treated with DCCD or trypsin at 4°C and subsequently assayed for Ca2+ uptake at 37°C there was no significant loss of Ca2+ influx. These data suggest that the temperature sensitive high affinity Ca2+ flux component in BLMV is mediated by a protein which undergoes a modification at low temperatures, resulting in decreased Ca2+ transport.We thank Dr. Bruce Baum, Dr. Yukiharu Hiramatsu, Dr. Ofer Eidelman, and our other colleagues for their support during this work.  相似文献   

14.
Summary The passive electrical cable properties of ocellar L-neurons were determined by applying current steps and recording the voltage transients using a two-electrode intracellular current clamp system. Morphological data were obtained following intracellular staining with Lucifer yellow.Two groups of neurons were distinguished physiologically. In the first group both the membrane time constant m and the first equalizing time constant 1 could be determined. In the second group only m was measurable. The ratio of the physiological groups was equal to the ratio of the morphological types ML:(M1 plus M2) in the median ocellar nerve. Thus the first group probably consists of ML-type L-neurons. The passive cable properties of this group were calculated by combining the physiological and morphological data. The following values were obtained: electrotonic lengthL=1.35; membrane time constant m =7.6 ms; length constant =0.22 cm; membrane resistivityR m=2.0 · 103 · cm2; membrane capacitanceC m=3.8 F · cm–2; intracellular resistivityR i=24 · cm. Evidence is presented that the membrane parameters of the other types of L-neurons have the same values. The results are discussed with special reference to transmission in the ocellar system.  相似文献   

15.
Summary Using manometric and gas analytical methods oxygen consumption , carbon dioxide production , respiratory quotientRQ, (Fig. 1A-C) and thorax surface temperature difference T ts (Fig. 3) were determined in single bees. The animals were either sitting in respiratory chambers or were suspended by the scutum, in which case they were resting, walking (turning a small polystyrene ball) or flying in a closed miniature wind tunnel.During resting (sitting in Warburg vessels) at an ambient temperatureT a=10°C,RQ was 1.01±0.2 (n=905) with variations due to method (Fig. 1D, E).RQ values during walking were determined in single cases. In no case were they significantly different from 1.00. After the first 10 min of flight meanRQ was 1.00±0.04. It was significantly smaller than 1.00 (RQ=0.97) only during the last 5% of long-time flights (mean flight duration 58.8±28.8 min). With the exception of near-exhaustion conditions no signs of fuels other than carbohydrates were found.Metabolic rateP m was 19.71±21.38 mW g–1 during resting at 20°CT a30°C indicating that many resting bees actively thermoregulate at higherT a. After excluding bees which were actively thermoregulating, by an approximationP m was 5.65±2.44 mW g–1 at 20°CT a30°C. True resting metabolic rate for sitting bees atT a=10°C was 1.31±0.53 mW g–1 (Fig. 2A, B).A significant negative correlation was found between relative (specific) oxygen consumption rel and body massM b at 85 mgM b150 mg.At 0°CT ts16.5°C a significant (-0.01) positive correlation was found between and T ts in single resting bees: T Ts+0.099, or betweenP m and T ts:P m=1.343 T ts+0.581 (Fig. 3D) in ml h–1,P m in mW,T in °C).During walking (duration 13.15±5.71 min,n=13) at 12.5°CT a21°C a stable T ts of 11.41±3.37°C, corresponding to 167 mW g–1, was reached for 80 to 90% of the walking time (Fig. 4B).During wind tunnel flights of tethered animals the minimal metabolic power measured in exhaustion experiments was 240 mW g–1. Calculation of factors of increase inP m is of limited value in poikilotherms, in which true resting conditions are not exactly defined.  相似文献   

16.
Characteristics of thermoluminescence glow curves were compared in three types of Euglena cells: (i) strictly autotrophic, Cramer and Myers cells; (ii) photoheterotrophic cells sampled from an exponentially growing culture containing lactate as substrate repressing the photosynthetic activity; (iii) semiautotrophic cells, sampled when the lactate being totally exhausted, the photosynthesis was enhanced.In autotrophic and semiautotrophic cells, composite curves were observed after series of two or more actinic flashes fired at –10°C, which can be deconvoluted into a large band peaking in the range 12–22°C and a smaller one near 40°C, This second band presents the characteristics of a typical B band (due to S2/3QB - recombination), whereas the first one resembled the band, shifted by -15–20°C, which is observed in herbicide resistant plants. The amplitude of this major band, which was in all cases very low after one flash, exhibited oscillations of period four but rapidly damping, with maxima after two and six flashes. In contrast, photoheterotrophic Euglena displayed single, non-oscillating curves with maxima in the range 5–10°C.In autotrophic and semiautotrophic cells, oxidizing pretreatments by either a preillumination with one or more (up to twenty-five) flashes, or a far-red preillumination in the presence of methylviologen, followed by a short dark period, induced thermoluminescence bands almost single and shifted by +3–5°C, or +12°C, respectively. In autotrophic cells, far-red light plus methyl viologen treatment induced a band peaking at 31°C, as in isolated thylakoids from Euglena or higher plants, while it had barely any effect in photoheterotrophic cells.Due to metabolic activities in dark-adapted cells, a reduction of redox groups at the donor and acceptor sides of PS II dark-adapted cells is supposed to occur. Two different explanations can be proposed to explain such a shift in the position of the main band in dark-adapted autotrophic control. The first explanation would be that in these reducing conditions a decreasing value of the equilibrium constant for the reaction: SnQA -QBSnQAQB -, would determine the shift of the main TL band towards low temperatures, as observed in herbicide resistant material. The second explanation would be that the main band would correspond to peak III already observed in vivo and assigned to S2/3QB 2- recombinations.Abbreviations CM Cramer and Myers - D1 a 32 kDa protein component of the PS II reaction center, psbA.gene product - D2 a 34 kDa protein component of the PS II reaction center, psbD gene product - FR lar-red illumination - Lexpo and Lstat cells from lactate culture samples at exponential and stationary phase of growth - MV methylviologen - pBQ parabenzoquinone - PQ plastoquinone - PS II photosystem II - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - TL thermoluminescence  相似文献   

17.
Summary Changing the temperature from 10–40 °C modifies the transmission at an established monosynaptic connection between the fast extensor tibiae (FETi) and flexor tibiae motor neurons in the metathoracic ganglion of the locustSchistocerca gregaria (Forskål). Striking changes occur to the shape of the spikes, to membrane resistance, to the synaptic delay, and to the evoked synaptic potentials.In the presynaptic FETi motor neuron, raising the temperature reduces the amplitude of an antidromic spike recorded in the soma by a factor of 10 (40 mV to 4 mV), reduces the time taken to reach peak amplitude by 5 (3.5 to 0.7 ms) and decreases the duration at half maximum amplitude by 0.5. The conduction velocity of the spike in the axon is increased by 50% from 10 °C to 40 °C. Orthodromic spikes are affected by temperature in a similar way to the antidromic spikes.The membrane resistance of both pre- and postsynaptic motor neurons falls as the temperature is raised. The membrane resistance of FETi falls by a factor of 4 (about 4 M at 10 °C to 1 M at 40 °C). A contributory component to this fall could be the increase in the frequency of synaptic potentials generated as a result of inputs from other neurons. No temperature dependence could be demonstrated on the voltage threshold relative to resting potential for evoking orthodromic spikes, but because the resistance changes, the current needed to achieve this voltage must be increased at higher temperatures.The latency measured from the peak of the spike in the soma of FETi to the start of the EPSP in the soma of a flexor motor neuron decreases by a factor of 20 (10 ms at 10 °C to 0.5 ms at 40 °C).In a postsynaptic flexor tibiae motor neuron, the amplitude of the evoked synaptic potential increases by a factor of 3.4 (5 mV to 17 mV), its duration at half maximum amplitude decreases by 3 (7 ms at 12 °C to 2.3 ms at 32 °C) and its rate of rise increases by 3. An increased likelihood that spikes will occur in the flexor contributes to the enhanced amplitude of the compound EPSP at temperatures above 20 °C.Abbreviation FETi fast extensor tibiae motor neuron  相似文献   

18.
The batch productivity (Q TM) of the production of the nucleoside antibiotic toyocamycin (TM) by Streptomyces chrestomyceticus was increased ten-fold by selection of a UV generated mutant, optimization of pH, increasing incubation temperature from 28 °C to 36 °C, and addition of soy oil. Initial high oxygen transfer rates stimulated Q TM maxima two-fold. Antibiotic production by the mutant strain, U190, however, appeared more shear sensitive than the parent culture FCRF 341 with maximum antibiotic titer being inversely related to impellor tip velocity, T v . For this reason, scale-up could not be done at constant P/V or constant volumetric oxygen transfer. Instead, programming of impeller speed was evaluated in order to maintain optimal impeller tip velocity during scale-up. It was found that a low constant T v maintained in scale-up in geometrically similar vessels was most beneficial for duplication of optimal antibiotic productivity, Q TM. Pilot fermentations (120 dm3 scale) were used to determine coefficients of Q TM variation from oxygen uptake rate (OUR) and total CO2 evolution data for monitoring of Q TM variation during scale-up to the 12,000 dm3 scale. This technique allowed for on-line prediction of antibiotic titer and Q TM from fermentor exhaust gas data.List of Symbols A scale constant - B shape constant - C location of maximum constant - D m impeller diameter (m) - H m liquid height (m) - OTR MmolO2·(dm3)–1min–1 oxygen transfer rate - OUR MmolO2·(dm3)–1min–1 oxygen uptake rate - PCV cm3 packed cell volume - P/V watts/dm3 volumetric power consumption - Q 1 · min–1 corrected to standard conditions of temperature, pressure aeration rate - Q TM g/(cm3 · h) or kg/(m3 · h) antibiotic productivity - T m tank diameter - T mix s mixing time - T v cm · s–1 impeller tip velocity - TM g/cm3 Toyocamycin concentration - TNP Tricyclic nucleoside phosphate  相似文献   

19.
Summary The endogenous respiration of 14C-labelled spores of B. cereus was measured through the 14CO2 produced, and the rate expressed as Q (l CO2/hxmg). New upper limits for respiration in various conditions have been set.Dry spores had no measurable activity; Q<10–4 at room temperature and <10–3 at 35° C. For wet spores of different harvests, at 30°C, Q lay between 0.0013 to 0.067. Near 40° C, respiration showed a maximum. Thermal history has a great influence on Q. CO2 production by heat-killed spores is attributed largely to infection.Water or 10–3 m sodium phosphate buffer (pH=6.5) gave equal spore respiration, in strong NaCl it was less. Azide enhanced respiration dramatically. A temporary increase was also found with non-radioactive glucose. Exogenous respiration of spores in glucose exceeded endogenous respiration.Endogenous and exogenous respiration of vegetative forms were much larger than those of spores and were time-dependent. The ratio of minimum (endogenous, dry spores) and maximum (exogenous, wet vegetative cells) respiration was at least 3x105.  相似文献   

20.
The following electrical parameters of giant neurons of the molluskPlanorbis corneus were determined: the time constant , the ratio between the input conductance of the axon membrane and the conductance of the soma membrane , the input resistance of the neuron RN and axon ra, the total rs and specific Rs resistance of the soma membrane. To determine and the course of the transition process during membrane polarization by a square pulse of input current was analyzed. RN was estimated from the electrotonic potential V after the end of the transition process; rs and ra were calculated by the equations rs=RN·(1+) and ra=rs/. The surface area of the soma membrane (for calculating Rs) was estimated from its capacitance. It was assumed that the specific capacitance of the membrane is 1 µ F/cm2. According to these calculations the surface area of the soma may be more than ten times greater than the surface area of a sphere of the same diameter. The results showed that Rs can vary appreciably in different neurons from 20·103 to 200·103 ·cm2. The time constant of the different neurons varies from 20 to 200 msec; usually the value of did not exceed 1.0 and it varied from nearly zero to 1.5. Changes in temperature and ionic composition of the external solution led to changes in the parameters ra and rs and also of and . Various responses of the soma and axon membranes to changes in the composition of the external solution were noted and they can be regarded as an index of some properties of the membrane in these regions of the cells.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 651–658, November–December, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号