首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DFMO (alpha-difluoromethylornithine) is a specific irreversible inhibitor of ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, which in turn control macromolecule synthesis during cell proliferation. The current study was designed to investigate the effects of inhibition of ODC during discrete prenatal periods on renal growth and function. We administered 5 doses of 500 mg/kg DFMO or saline s.c. to timed pregnant Sprague-Dawley rats at 12 hr intervals beginning on gestation days (GD) 11, 14, or 17. Half the dams were killed on GD 20 for fetal morphological analyses and half were allowed to go to term. Renal function was assessed on postnatal days (PD) 3, 6, 10, and 14 by tests of basal renal clearance and urinary concentrating ability, and on PD 42-44 we measured serum chemistries. All three gestational treatment regimens resulted in postnatal deficits in general growth. Only in the GD 11-13 treatment group was there evidence of embryotoxicity and neonatal renal pathophysiology. Fetal weights and urogenital morphology were altered following GD 14-16 treatment and there were persistent deficits of renal growth. GD 17-19 treatment was associated only with transient postnatal deficits of renal growth. Thus, inhibition of ODC during critical prenatal periods induced distinct developmental effects. However, there were no associations between impaired renal growth and function. These data indicate that general tissue growth is not always a predictor of physiological development and support the necessity of multifaceted approaches to the understanding of adverse developmental effects.  相似文献   

2.
Pregnant Sprague-Dawley rats were exposed to adriamycin and offspring were evaluated for renal functional competence. Exposure consisted of 0, 1.0 or 1.5 mg/kg/day by intraperitoneal injection on either gestational days 7-10 or 10-12. The exposed offspring were evaluated for 1) growth and viability; 2) serum concentrations and renal clearances of creatinine, urea, glucose, sodium, potassium, chloride, and total osmotic particles; 3) the ability to excrete an osmotically concentrated urine following fluid deprivation; 4) the ability to excrete an osmotically dilute urine following isotonic volume expansion; and 5) the ability to secrete hydrogen ions following administration of a fixed acid. Exposure during days 7-10 of gestation produced greater evidence of overt developmental toxicity than did exposure during days 10-12 of gestation. The reverse was true, however, for the effects of adriamycin on renal function, as the majority of effects on these measures were found in the high-dose pups exposed during days 10-12 of gestation. The application of the renal function tests did not lower the observed effect level for adriamycin-induced developmental toxicity, but it did provide confirmatory information on the nature of the effect, on the magnitude of the effect in the exposed population, and on the possible morphological site of observed functional lesion. For reasons discussed in the text, a combination of the basal clearance test and the renal concentrating test appears to provide the most efficient means for detecting the presence of prenatally induced functional alterations of the kidneys.  相似文献   

3.
This study aimed to evaluate renal morphology and the renal renin-angiotensin system in 6- and 81-day-old male and female offspring exposed to zinc deficiency during fetal life, lactation and/or postnatal growth. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. Afterwards, offspring were fed a low- or a control zinc diet until 81 days of life. In 6- and/or 81-day-old offspring, we evaluated systolic blood pressure, renal morphology, renal angiotensin II and angiotensin 1-7 concentration, and AT1 and AT2 receptors and angiotensin-converting enzymes protein and/or mRNA expression. At 6 days, zinc-deficient male offspring showed decreased glomerular filtration areas, remodelling of renal arteries, greater number of renal apoptotic cells, increased levels of Angiotensin II, higher Angiotensin II/Angiotensin 1-7 ratio and increased angiotensin-converting enzyme 1, AT1 and AT2 receptors mRNA and/or protein expression. Exacerbation of the renal Ang II/AT1 receptor axis and remodelling of renal arteries were also observed in adult zinc-deficient male offspring. An adequate zinc diet during post-weaning life did not improve all the alterations induced by zinc deficiency in early stages of development. Female offspring would appear to be less sensitive to zinc deficiency with no increase in blood pressure or significant alterations in renal morphology and the renin-angiotensin system. Moderate zinc deficiency during critical periods of prenatal and postnatal development leads to early morphological renal alterations and to permanent and long-term changes in the renal renin-angiotensin system that could predispose to renal and cardiovascular diseases in adult life.  相似文献   

4.
The objective of this investigation was to determine the effect of low-dose prenatal X-irradiation on postnatal growth and neurobehavioral development, and whether alterations would manifest at dosages lower than those which produce anatomic malformations from exposure at the most sensitive period of organogenesis. Ninety-eight Wistar strain rats were exposed to 0.1, 0.2, or 0.4 Gy X-radiation of were sham irradiated on the 9th or 17th day of gestation. A conventional teratologic evaluation was completed on half of the animals (572 fetuses). The age of appearance of four physiologic markers and of acquisition of six reflexes was observed in 372 offspring. Exposure during early organogenesis at these levels had no effect on any of these parameters. Prenatal exposure to X-radiation on the 17th day of gestation at dosage levels greater than 0.1 Gy resulted in alterations in the appearance of three postnatal neurophysiologic parameters. Growth retardation throughout the postpartum period also was observed in the offspring. The induction of developmental and reflex alterations had a comparable threshold to the known threshold for anatomic malformations on the 9th day. These results indicate that all of the parameters studied had thresholds either at or above 0.2 Gy acute radiation, and that the postpartum developmental and reflex acquisition measures were not more sensitive indicators of exposure to X-radiation than growth parameters.  相似文献   

5.
Hypertension can originate from pre- and post-natal insults. High-fat (HF) diet and prenatal dexamethasone (DEX) exposure are both involved in hypertension of developmental origins. We examined whether postnatal HF diet sex-specifically increases the vulnerability to prenatal DEX exposure-induced programmed hypertension in adult offspring. Additionally, we sought to identify candidate proteins involved in programmed hypertension through a mass spectrometry-based quantitative proteomic approach. Male and female offspring were studied separately: control, DEX, HF, and DEX + HF (n=8/group). Pregnant Sprague–Dawley rats received dexamethasone (0.1 mg/kg body weight) or vesicle from gestational day 16–22. Offspring received high-fat diet (D12331, Research Diets) or regular diet from weaning to 4 months of age. Rats were sacrificed at 4 months of age. We found that postnatal HF diet increased vulnerability of prenatal DEX-induced hypertension in male but not in female adult offspring. Additionally, HF and DEX elicited renal programming in a sex-specific fashion. In males, DEX + HF increased renal parvalbumin (PVALB) and carbonic anhydrase III (CA III) protein levels. While prenatal DEX down-regulated PVALB and CA III protein abundance in female offspring kidneys. Moreover, DEX + HF increased renal protein level of type 3 sodium hydrogen exchanger (NHE3) in males but not in females. In conclusion, postnatal HF diet and prenatal DEX exposure synergistically induced programmed hypertension in male-only offspring. DEX + HF induced sex-specific alterations of protein profiles in offspring kidneys. By identifying candidate proteins underlying sex-specific mechanisms, our results could lead to novel offspring sex-specific interventions to prevent hypertension induced by antenatal corticosteroids and postnatal HF intake in both sexes.  相似文献   

6.
The ampulla ureter and ampulla urogenital/uriniferous papilla represent differing morphologies of the caudal urogenital ducts in snakes. The ampulla ureter is an enlarged portion of the caudal extremity of the ureter that communicates the cranial regions of the ureter and the ductus deferens/Wolffian duct to the urodaeum. The ampulla urogenital/uriniferous papilla is an enlarged pouch, distinct from the ureter, which communicates the ureter and ductus deferens/Wolffian duct to the urodaeum. Although functional differences of these two structures are unknown, the ampulla urogenital/uriniferous papilla may have evolved for urine storage in males and females, and secondarily evolved a reproductive function in males. The most parsimonious optimization of the ampulla ureter and ampulla urogenital/uriniferous papilla indicates that the ampulla ureter is the ancestral state in snakes. Examining the presence or absence of the ampulla ureter and ampulla urogenital/uriniferous papilla in snakes on conflicting caenophidian phylogenies results in two hypotheses for the evolution of these variant morphologies: (1) The ampulla urogenital/uriniferous papilla evolved from the ampulla ureter independently in the Colubroidea and Elapoidea with subsequent losses of the ampulla urogenital/uriniferous papilla in the Elapoidea and (2) a single transition from the ampulla ureter to the ampulla urogenital/uriniferous papilla on the branch leading to the Colubroidea + Elapoidea with subsequent losses of the ampulla urogenital/uriniferous papilla in the Elapoidea and Colubroidea. The presence of the ampullae urogenital/uriniferous papilla in only the Colubroidea and Elapoidea highlights the affinity of these two taxonomic groups, a relationship that is strongly supported in published cladograms produced with molecular datasets.  相似文献   

7.
In the laboratory rat and mouse, neonatal handling enhances hippocampal-dependent learning in adulthood, an effect mediated by changes in maternal behavior toward the handled young. In the present study, we examined the interaction between neonatal handling and biparental care during the early postnatal period and its effect on cognitive function in adult California mice (Peromyscus californicus). We characterized the parental behavior of handled and nonhandled father-present and father-absent families over the first 15 days of life. We then assessed cognitive performance of male and female offspring in the Barnes maze and object recognition test after they were 60 days of age. We found that the amount of licking and grooming received by pups was decreased in father-absent families. By postnatal days 12-15, licking and grooming in handled, father-absent families were equivalent to that of nonhandled, father-present families. Handling enhanced novel object recognition in father-present male mice with no effect in females. In the nonhandled group, the presence of the father had no effect on object recognition learning in male or female mice. Handling also enhanced spatial learning in the Barnes maze. In nonhandled families, the presence of the father appeared to have no effect on spatial learning in the male offspring. Interestingly, spatial learning in nonhandled, father-absent, female offspring was similar to that of handled animals. The average amount of licking and grooming received by pups was negatively correlated with the average number of errors made on the first day of reversal training in the Barnes maze. These data support previous findings that neonatal handling facilitates learning and memory in adulthood, suggest that under certain environmental conditions, there is a sex difference in the response of pups to paternal care, and further demonstrate the importance of active parental investment for offspring cognitive development.  相似文献   

8.
An increased intake of the antioxidant α-Tocopherol (vitamin E) is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Gliasynapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses) was increased.These findings indicate that gestational and neonatal exposure to supranutritional Tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant gliasynapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.Key words: Vitamin E, CA1 stratum radiatum, axo-spinous synapses, glia-synapse relationship, tripartite synapses, morphometry, electron microscopy  相似文献   

9.
Maternal effects on development are profound. Together, genetic and epigenetic maternal effects define the developmental trajectory of progeny and, ultimately, offspring phenotype. Maternally provisioned environmental conditions and signals affect conceptus, fetoplacental and postnatal development from the time of conception until weaning. In the pig, reproductive tract development is completed postnatally. Porcine uterine growth and uterine endometrial development occur in an ovary-independent manner between birth (postnatal day = PND 0) and PND 60. Milk-borne bioactive factors (MbFs), exemplified by relaxin, communicated from lactating dam to nursing offspring via a lactocrine mechanism, represent an important source of extraovarian uterotrophic support in the neonatal pig. Lactocrine deficiency from birth affects both the neonatal porcine uterine developmental program and trajectory of uterine development, with lasting consequences for endometrial function and uterine capacity in adult female pigs. The potential lactocrine signaling window extends from birth until the time of weaning. However, it is likely that the maternal lactocrine programming window – that period when MbFs communicated to nursing offspring have the greatest potential to affect critical organizational events in the neonate – encompasses a comparatively short period of time within 48 h of birth. Lactocrine deficiency from birth was associated with altered patterns of endometrial gene expression in neonatally lactocrine-deficient adult gilts during a critical period for conceptus–endometrial interaction on pregnancy day 13, and with reduced litter size, estimated at 1.4 pigs per litter, with no effect of parity. Data were interpreted to indicate that reproductive performance of female pigs that do not receive sufficient colostrum from birth is permanently impaired. Observations to date suggest that lactocrine-dependent maternal effects program postnatal development of the porcine uterus, endometrial functionality and uterine capacity. In this context, reproductive management strategies and husbandry guidelines should be refined to ensure that such practices promote environmental conditions that will optimize uterine capacity and fecundity. This will entail careful consideration of factors affecting lactation, the quality and abundance of colostrum/milk, and practices that will afford neonatal pigs with the opportunity to nurse and consume adequate amounts of colostrum.  相似文献   

10.
Overnutrition during pre- and postnatal development both confer increased susceptibility to renal and metabolic risks later in life; however, whether they have an additive effect on the severity of renal and metabolic injury remains unknown. The present study tested the hypothesis that a combination of a pre- and postnatal diet high in fat/fructose would exacerbate renal and metabolic injury in male offspring later in life. Male offspring born to high fat/high-fructose-fed mothers and fed a high-fat/high-fructose diet postnatally (HF-HF) had increased urine albumin excretion (450%), glomerulosclerosis (190%), and tubulointerstitial fibrosis (101%) compared with offspring born to mothers fed a standard diet and fed a standard diet postnatally (NF-NF). No changes in blood pressure or glomerular filtration were observed between any of the treatment groups. The HF-HF offspring weighed ~23% more than offspring born to mothers fed a high-fat/high-fructose diet and fed a normal diet postnatally (HF-NF), as well as offspring born to mothers fed a standard diet regardless of their postnatal diet. The HF-HF rats also had increased (and more variable) blood glucose levels over 12 wk of being fed a high-fat/high-fructose diet. A combination of exposure to a high-fat/high-fructose diet in utero and postnatally increased plasma insulin levels by 140% compared with NF-NF offspring. Our data suggest that the combined exposure to overnutrition during fetal development and early postnatal development potentiate the susceptibility to renal and metabolic disturbances later in life.  相似文献   

11.
The concept of the foetal/developmental origins of adult disease has been around for ~20 years and from the original epidemiological studies in human populations much more evidence has accumulated from the many studies in animal models. The majority of these have focused upon the role of early dietary intake before conception, through gestation and/or lactation and subsequent interactions with the postnatal environment, e.g. dietary and physical activity exposures. Whilst a number of theoretical models have been proposed to place the experimental data into a biological context, the underlying phenomena remain the same; developmental deficits (of single (micro) nutrients) during critical or sensitive periods of tissue growth alter the developmental pathway to ultimately constrain later functional capacity when the individual is adult. Ageing, without exception, exacerbates any programmed sequelae. Thus, adult phenotypes that have been relatively easy to characterise (e.g. blood pressure, insulin sensitivity, body fat mass) have received most attention in the literature. To date, relatively few studies have considered the effect of differential early environmental exposures on reproductive function and fecundity in predominantly mono-ovular species such as the sheep, cow and human. The available evidence suggests that prenatal insults, undernutrition for example, have little effect on lifetime reproductive capacity despite subtle effects on the hypothalamic-pituitary-gonadal axis and gonadal progenitor cell complement. The postnatal environment is clearly important, however, since neonatal/adolescent growth acceleration (itself not independent from prenatal experience) has been shown to significantly influence fecundity in farm animals. The present paper will expand these interesting areas of investigation and review the available evidence regarding developmental programming of reproduction and fertility. However, it appears there is little strong evidence to indicate that offspring fertility and reproductive senescence in the human and in farm animal species are overtly affected by prenatal nutrient exposure. Nevertheless, it is clear that the developing gonad is sensitive to its immediate environment but more detailed investigation is required to specifically test the long-term consequences of nutritional perturbations during pregnancy on adult reproductive well-being.  相似文献   

12.
Higher brain function in mammals primarily relies on complex yet sophisticated neuronal circuits in the neocortex. In early developmental stages, neocortical circuits are coarse. Mostly postnatally, the circuits are reorganized to establish mature precise connectivity, in an activity-dependent manner. These connections underlie adult brain function. The rodent somatosensory cortex (barrel cortex) contains a barrel map in layer 4 (L4) and has been considered an ideal model for the study of postnatal neuronal circuit formation since the first report of barrels in 1970. Recently, two-photon microscopy has been used for analyses of neuronal circuit formation in the mammalian brain during early postnatal development. These studies have further highlighted the mouse barrel cortex as an ideal model. In particular, the unique dendritic projection pattern of barrel cortex L4 spiny stellate neurons (barrel neurons) is key for the precise one-to-one functional relationship between whiskers and barrels and thus an important target of studies. In this article, I will review the morphological aspects of postnatal development of neocortical circuits revealed by recent two-photon in vivo imaging studies of the mouse barrel cortex and other related works. The focus of this review will be on barrel neuron dendritic refinement during neonatal development.  相似文献   

13.
Forty-one pregnant Wistar strain rats were irradiated with 0.6-Gy X rays or were sham irradiated on the 9th or 17th days of gestation to determine if this dosage level would result in alterations in postnatal neurophysiologic development. Half of the mothers were sacrificed at term, and the developmental status of 221 newborns was evaluated. The remaining mothers delivered and raised their litters. The 161 offspring were observed for the age of attainment of the following physiologic parameters: pinna detachment, eye opening, testes opening. Offspring were also tested for the acquisition of the following selected reflexes: surface righting, negative geotaxis, auditory startle, air righting, and visual placing. Term fetal weight was lower than the controls in the group irradiated on the 9th day but was recuperable postnatally. None of the 9 developmental tests performed postnatally were abnormal in the animals irradiated on the 9th day. Thus, at least with regard to these measures, the surviving embryos exposed during the all-or-none period could not be differentiated from the controls. Offspring irradiated on the 17th day exhibited retarded growth which persisted during neonatal life. The three-day-mean neonatal weight was significantly lower in the group irradiated on the 17th day compared to controls. There were no significant maternal body weight or organ/weight differences between the groups. Rats exposed in utero on the 17th day had a significantly delayed acquisition of air righting. These results demonstrate that 0.6-Gy in utero irradiation on the 17th day of gestation can cause subtle alterations in growth and development of the Wistar strain rat during postnatal life.  相似文献   

14.
Intrauterine and postnatal zinc restriction may result in an adverse environment for the development of cardiovascular and renal systems. This study evaluated the effects of moderate zinc deficiency during fetal life, lactation, and/or postweaning growth on systolic blood pressure, renal function, and morphology in adult life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy up to weaning. After weaning, male offspring of each group of mothers were fed low or control zinc diet. Systolic blood pressure, creatinine clearance, proteinuria, renal morphology, renal apoptosis. and renal oxidative stress state were evaluated after 60 days. Zinc deficiency during pre- and postweaning growth induced an increase in systolic blood pressure and a decrease in the glomerular filtration rate associated with a reduction in the number and size of nephrons. Activation of renal apoptosis, reduction in catalase activity, glutathione peroxidase activity, and glutathione levels and increase in lipid peroxidation end products could explain these morphometric changes. Zinc deficiency through pre- and postweaning growth induced more pronounced renal alteration than postweaning zinc deficiency. These animals showed signs of renal fibrosis, proteinuria, increased renal apoptosis, and higher lipid peroxidation end products. A control diet during postweaning growth did not totally overcome renal oxidative stress damage, apoptosis, and fibrosis induced by zinc deficiency before weaning. In conclusion, zinc deficiency during a critical period of renal development and maturation could induce functional and morphological alterations that result in elevated blood pressure and renal dysfunction in adult life.  相似文献   

15.
Synopsis The urogenital papillae of 30 species of Holarctic lampreys were examined to determine if this structure has any taxonornic use. Total length, branchial length and papilla length were measured. A correlation between mean papilla length and mean total length of the species existed in males for parasitic species but not nonparasitic species, indicating a potential use in nonparasitic species. In nonparasitic species the most obvious differences existed in the papilla length: branchial length ratio. From the limited material available there appeared to be no geographic variation in this ratio, although there is a seasonal variation with the ratio increasing as, spawning approaches. It therefore appears that urogenital papilla length has taxonomic value in male nonparasitic lampreys, provided the specimens are collected in spawning condition. The female papilla is too small to be of use.  相似文献   

16.
Chen WJ  Kelly RB 《Life sciences》2005,76(11):1249-1258
Smoking during pregnancy causes intrauterine growth retardation and low birth weight of the offspring. However, it is unclear whether nicotine, rather than other compounds from a cigarette, would mediate long-term growth retardation. There is a body of evidence suggesting that optimal thyroid status is important for the normal development of the fetus. Therefore, these studies examined whether developmental nicotine exposure would interfere with the growth of the offspring and alter the thyroid status of neonates. Pregnant Sprague-Dawley rats were given 0, 15 or 25 mg nicotine pellets throughout pregnancy. Some offspring continued to receive 1 or 2 mg/kg/day nicotine during early postnatal period. The remaining offspring received no further treatment after birth. The body weight of all offspring was monitored until adulthood. Additionally, the neonatal thyroid status from all treatment groups was assessed from the serum of 10-day-old pups. Regardless of the timing of nicotine exposure, the nicotine treatment significantly increased the body weight in female offspring starting on postnatal day (PD) 35 and such an increase persisted into adulthood (PD 91). However, this nicotine exposure paradigm led to a transient increase in male offspring body weight on PD 35. Furthermore, current nicotine exposure regimens did not alter the total T4 level, T3 uptake and the calculated Free T4 index. The present findings are in agreement with some clinical studies reporting a higher body weight among children born to mothers who smoked during pregnancy. Furthermore, the data on thyroid status suggest that cigarette smoking-induced alterations in thyroid status might be mediated through compounds in cigarettes other than nicotine.  相似文献   

17.
Parental and environmental factors during the prenatal and postnatal periods permanently affect the physiology and metabolism of offspring, potentially increasing disease risk later in life. Underlying mechanisms are being elucidated, and effects on a number of organs and metabolic pathways are likely involved. In this review, we consider effects on the developing hypothalamic-pituitary-adrenal (HPA) axis, which may represent a common pathway for developmental programming. The focus is on prenatal and early postnatal development, during which the HPA axis may be programmed in a manner that affects health for a lifetime. Programming of the HPA axis involves, at least in part, epigenetic remodeling of chromatin, leading to alterations in the expression of genes in many organs and tissues involved in HPA activation and response, including the hippocampus and peripheral tissues. Examples of developmental epigenetic modifications affecting the HPA axis as well as target tissues are provided.  相似文献   

18.
It is increasingly accepted that alterations of the intrauterine and early postnatal nutritional, metabolic and hormonal environment may predispose individuals to development of diseases in later life. Results from studies of the offspring of diabetic mothers strongly support this hypothesis. It has also been suggested that being light at birth leads to an increased risk of the metabolic syndrome (Syndrome X) in later life (the Barker hypothesis). The pathophysiological mechanisms that underlie this programming are unclear. However, hormones are important environment-dependent organizers of the developing neuroendocrine-immune network, which regulates all the fundamental processes of life. Hormones can act as 'endogenous functional teratogens' when present in non-physiological concentrations, induced by alterations in the intrauterine or neonatal environment during critical periods of perinatal life. Perinatal hyperinsulinism is pathognomic in offspring of diabetic mothers. Early hyperinsulinism also occurs as a result of early postnatal overfeeding. In rats, endogenous hyperinsulinism, as well as peripheral or intrahypothalamic insulin treatment during perinatal development, may lead to 'malprogramming' of the neuroendocrine systems regulating body weight, food intake and metabolism. This results in an increased disposition to become obese and to develop diabetes throughout life. Similar malprogramming may occur due to perinatal hypercortisolism and hyperleptinism. With regard to 'small baby syndrome' and the thrifty phenotype hypothesis, we propose that early postnatal overfeeding of underweight newborns may substantially contribute to their long-term risk of obesity and diabetes. In summary, a complex malprogramming of the central regulation of body weight and metabolism may provide a general aetiopathogenetic concept, explaining perinatally acquired disposition to later disease and, thereby, opening a wide field for primary prevention.  相似文献   

19.
Profound alterations in the function of GABA occur over the course of postnatal development. Changes in GABA(A) receptor expression are thought to contribute to these differences in GABAergic function, but how subunit changes correlate with receptor function in individual developing neurons has not been defined precisely. In the current study, we correlate expression of 14 different GABA(A) receptor subunit mRNAs with changes in the pharmacological properties of the receptor in individual hippocampal dentate granule cells over the course of postnatal development in rat. We demonstrate significant developmental differences in GABA(A) receptor subunit mRNA expression, including greater than two-fold lower expression of alpha1-, alpha4- and gamma2-subunit mRNAs and 10-fold higher expression of alpha5-mRNA in immature compared with adult neurons. These differences correlate both with regional changes in subunit protein level and with alterations in GABA(A) receptor function in immature dentate granule cells, including two-fold higher blockade by zinc and three-fold lower augmentation by type-I benzodiazepine site modulators. Further, we find an inverse correlation between changes in GABA(A) receptor zinc sensitivity and abundance of vesicular zinc in dentate gyrus during postnatal development. These findings suggest that developmental differences in subunit expression contribute to alterations in GABA(A) receptor function during postnatal development.  相似文献   

20.
Fluctuating asymmetry of paired morphological structures is regarded as a measure of developmental stability. To test whether poorly canalized individuals are highly sensitive to postnatal environmental influence, we accepted the exogenous disease low-back pain as an example of such sensitivity. Asymmetry of the palmar a-b ridge count was examined in 217 males suffering from low-back pain against 300 healthy controls. Low-back pain patients showed significantly higher values of asymmetry indices indicating lower developmental stability. The results suggest that dermatoglyphic asymmetry can mark phenotypes weakly adapted to postnatal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号