首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma-aminobutyric acid (GABA)-like immunoreactive neurons were studied in the central and peripheral nervous system of Helix pomatia by applying immunocytochemistry on whole-mount preparations and serial paraffin sections. GABA-immunoreactive cell bodies were found in the buccal, cerebral and pedal ganglia, but only GABA-immunoreactive fibers were found in the viscero-parietal-pleural ganglion complex. The majority of GABA-immunoreactive cell bodies were located in the pedal ganglia but a few could be found in the buccal ganglia. Varicose GABA-ir fibers could be seen in the neuropil areas and in distinct areas of the cell body layer of the ganglia. The majority of GABA-ir axonal processes run into the connectives and commissures of the ganglia, indicating an important central integrative role of GABA-immunoreactive neurons. GABA may also have a peripheral role, since GABA-immunoreactive fibers could be demonstrated in peripheral nerves and the lips. Glutamate injection did not change the number or distribution of GABA-immunoreactive neurons, but induced GABA immunoreactivity in elements of the connective tissue ensheathing the muscle cells and fibers of the buccal musculature. This shows that GABA may be present in different non-neural tissues as a product of general metabolic pathways.  相似文献   

2.
Summary The distribution of FMRFamide-like immunoreactive neurons in the nervous system of the slug Limax maximus was studied using immunohistochemical methods. Approximately one thousand FMRFamide-like immunoreactive cell bodies were found in the central nervous system. Ranging between 15 m and 200 m in diameter, they were found in all 11 ganglia of the central nervous system. FMRFamide-like immunoreactive cell bodies were also found at peripheral locations on buccal nerve roots. FMRFamide-like immunoreactive nerve fibres were present in peripheral nerve roots and were distributed extensively throughout the neuropil and cell body regions of the central ganglia. They were also present in the connective tissue of the perineurium, forming an extensive network of varicose fibres. The large number, extensive distribution and great range in size of FMRFamide-like immunoreactive cell bodies and the wide distribution of immunoreactive fibres suggest that FMRFamide-like peptides might serve several different functions in the nervous system of the slug.  相似文献   

3.
Distribution of GABA-like immunoreactive neurons in the slug Limax maximus   总被引:2,自引:0,他引:2  
Summary Immunohistochemical techniques were used to study the distribution of gamma-amino butyric acid (GABA)-like immunoreactive neurons in the nervous system of the slug Limax maximus. Approximately 170 GABA-like immunoreactive cell bodies were found in the central nervous system. These were located in the cerebral, buccal and pedal ganglia. Most GABA-like immunoreactive neurons had small cell bodies, which were aggregated into discrete clusters within the cerebral and pedal ganglia. Three pairs of longer, uniquely identifiable, GABA-like immunoreactive cells were found in the cerebral ganglion. GABA-like immunoreactive nerve fibres were also found in all of the central ganglia but were absent from peripheral nerves. These results suggest that GABA acts as a central neurotransmitter in the slug. The possible roles of GABA-ergic neurotransmission in the slug are discussed.  相似文献   

4.
Immunocytochemistry was performed on the nervous system of Helix by the use of an antibody raised against a myotropic neuropeptide, the catch-relaxing peptide (CARP), isolated from Mytilus edulis. In each ganglion of the central nervous system of Helix pomatia, numerous CARP-immunoreactive cell bodies and a dense immunoreactive fiber system could be observed with a dominancy in the cerebral and pedal ganglia. The majority of the immunoreactive neurons are unipolar, although multipolar neurons also occur. In the neuropil areas, CARP-immunoreactive fibers show extensive arborization, which may indicate a central role of CARP. CARP-immunoreactive elements could be observed in each investigated peripheral nerve and peripheral areas, namely in the intestine, heart, aorta, buccal mass, lips, and foot. However, CARP-immunoreactive cell bodies could only be demonstrated in the intestine and the foot musculature. Thin varicose CARP-immunoreactive fibers were observed over both muscle and gland cells in the different peripheral organs, suggesting a peripheral role of CARP. In vivo CARP injection into the body cavity (10-3, 10-4, 10-5 M) altered the general behavioral state of the animals and induced the relaxation of the musculature of the whole body wall indicating that CARP has a significant role in the regulation of muscle contraction.  相似文献   

5.
The distribution and characterization of dopamine-containing neurons are described in the different ganglia of the central nervous system of Helix on the basis of the distribution of tyrosine hydroxylase immunoreactive (TH-ir) and dopamine immunoreactive (DA-ir) neurons. Both TH-ir and DA-ir cell bodies of small diameter (10–25 m) can be observed in the buccal, cerebral and pedal ganglia, dominantly on their ventral surface, and concentrated in small groups close to the origin of the peripheral nerves. The viscero-parietal-pleural ganglion complex is free of immunoreactive cell bodies but contains a dense fiber system. The largest number of TH-ir and DA-ir neurons can be detected in the pedal, and cerebral ganglia. The average number of TH-ir and DA-ir neurons significantly differs but all the identifiable groups of TH-ir neurons also show DA-immunoreactivity. Therefore, we consider the TH-ir neurons in those groups as being DA-containing neurons. The amounts of DA in the different ganglia assayed by high performance liquid chromatography correspond to the distribution and number of TH-ir and DA-ir neurons in the different ganglia. The axon processes of the labeled small-diameter neurons send thin proximal branches toward the cell body layer but only rarely surround cell bodics, whereas distally they give off numerous branches in the neuropil and then leave the ganglion through the peripheral nerves. In the cerebral ganglia, the analysis of the TH-ir pathways indicates that the largest groups of labeled neurons send their processes through the peripheral nerves in a topographic order. These results furnish morphological evidence that DA-containing neurons of Helix pomatia have both central and peripheral roles in neuronal regulation.  相似文献   

6.
两种软体动物神经系统一氧化氮合酶的组织化学定位   总被引:8,自引:0,他引:8  
运用一氧化氮合酶(NOS)组织化学方法研究了软体动物门双壳纲种类中国蛤蜊和腹足纲种类嫁Qi神经系统中NOS阳性细胞以及阳性纤维的分布。结果表明:在蛤蜊脑神经节腹内侧,每侧约有10-15个细胞呈强NOS阳性反应,其突起也呈强阳性反应,并经脑足神经节进入足神经节的中央纤维网中;足神经节内只有2个细胞呈弱阳性反应,其突起较短,进入足神经节中央纤维网中,但足神经节中,来自脑神经节阳性细胞和外周神经系统的纤维大多呈NOS阳性反应;脏神经节的前内侧部和后外侧部各有一个阳性细胞团,其突起分别进入后闭壳肌水管后外套膜神经和脑脏神经索。脏神经节背侧小细胞层以及联系两侧小细胞层的纤维也呈NOS阳性反应。嫁Qi中枢神经系统各神经节中没有发现NOS阳性胞体存在;脑神经节、足神经节、侧神经节以及脑—侧、脑—足、侧—脏连索中均有反应程度不同的NOS阳性纤维,这些纤维均源于外周神经。与已研究的软体动物比较,嫁Qi和前鳃亚纲其它种类一样,神经系统中NO作为信息分子可能主要存在于感觉神经。而中国蛤蜊的神经系统中一氧化氮作为信息分子则可能参与更广泛的神经调节过程。  相似文献   

7.
The biochemical characterization of nitric oxide synthase (NOS) and its distribution in the central nervous system (CNS) were studied in the heteropteran bug Triatoma infestans. NOS-like immunoreactivity was found in the brain, subesophageal ganglion, and thoracic ganglia by using immunocytochemistry. In the protocerebrum, NOS-immunoreactive (IR) somata were detected in the anterior, lateral, and posterior soma rinds. In the optic lobe, numerous immunostained somata were observed at the level of the first optic chiasma, around the lobula, and in the proximal optic lobe. In the deutocerebrum, NOS-IR perikarya were mainly observed in the lateral soma rind, surrounding the sensory glomeruli, and a few cell bodies were seen in association with the antennal mechanosensory and motor neuropil. No immunostaining could be detected in the antennal nerve. The subesophageal and prothoracic ganglia contained scattered immunostained cell bodies. NOS-IR somata were present in all the neuromeres of the posterior ganglion. Western blotting showed that a universal NOS antiserum recognized a band at 134 kDa, in agreement with the expected molecular weight of the protein. Analysis of the kinetics of nitric oxide production revealed a fully active enzyme in tissue samples of the CNS of T. infestans. This work was funded by the Facultad de Ciencias Biomédicas. Universidad Austral. A.J.N. is supported by the NIH-NIDCD (DC04292). Part of this work was performed at the Arizona Research Laboratories, Division of Neurobiology (Tucson, Arizon, USA) with the support of a Fulbright Research Award to B.P.S.  相似文献   

8.
We have investigated the distribution of tyrosine-hydroxylase-like immunoreactivity in the cerebral ganglia of the American cockroach, Periplaneta americana. Groups of tyrosine-hydroxylase-immunoreactive cell bodies occur in various parts of the three regions of the cerebral ganglia. In the protocerebrum, single large neurons or small groups of neurons are located in the lateral neuropil, adjacent to the calyces, and in the dorsal portion of the pars intercerebralis. Small scattered cell bodies are found in the outer layers of the optic lobe, and clusters of larger cell bodies can be found in the deutocerebrum, medial and lateral to the antennal glomeruli. Thick bundles of tyrosine-hydroxylase-positive nerve fibers traverse the neuropil in the proto- and deutocerebrum and innervate the glomerular and the nonglomerular neuropil with fine varicose terminals. Dense terminal patterns are present in the medulla and lobula of the optic lobe, the pars intercerebralis, the medial tritocerebrum, and the area surrounding the antennal glomeruli, the central body and the mushroom bodies. The pattern of tyrosine-hydroxylase-like immunoreactivity is similar to that previously described for catecholaminergic neurons, but it is distinctly different from the distribution of histaminergic and serotonergic neurons.  相似文献   

9.
Summary Serotonin-immunoreactive (5-HTi) neurons were mapped in the larval central nervous system (CNS) of the dipterous flies Calliphora erythrocephala and Sarcophaga bullata. Immunocytochemistry was performed on cryostat sections, paraffin sections, and on the entire CNS (whole mounts).The CNS of larvae displays 96–98 5-HTi cell bodies. The location of the cell bodies within the segmental cerebral and ventral ganglia is consistent among individuals. The pattern of immunoreactive fibers in tracts and within neuropil regions of the CNS was resolved in detail. Some 5-HTi neurons in the CNS possess axons that run through peripheral nerves (antenno-labro-frontal nerves).The suboesophagealand thoracico-abdominal ganglia of the adult blowflies were studied for a comparison with the larval ventral ganglia. In the thoracico-abdominal ganglia of adults the same number of 5-HTi cell bodies was found as in the larvae except in the metathoracic ganglion, which in the adult contains two cell bodies less than in the larva. The immunoreactive processes within the neuropil of the adult thoracico-abdominal ganglia form more elaborate patterns than those of the larvae, but the basic organization of major fiber tracts was similar in larval and adult ganglia. Some aspects of postembryonic development are discussed in relation to the transformation of the distribution of 5-HTi neurons and their processes into the adult pattern.  相似文献   

10.
Summary The distribution of FMRFamide-like immunoreactive (FLI) neurons and their morphological characteristics have been investigated in the central nervous system of the snail, Helix pomatia L. Approximately phageal ganglion complex. More than 50% of the FLI neurons were located in the cerebral ganglia. The FLI neurons could be divided into four groups according to size: (i) giant neurons (over 100 m); (ii) large neurons (80–100 m); (iii) medium-sized neurons (40–70 m); (iv) small neurons (12–30 m). They were distributed i) in groups or clusters, typical of small neurons and ii) in solitary form or in groups comprising 2–3 cells, typical of large and giant neurons. Giant and large neurons revealed only limited arborizations in the neuropil, but rich branching towards and in the peripheral nerves. Some of the small neurons had extensive arborizations of varicose fibers in the neuropil. They may therefore play some role in integratory processes. Varicose FLI fibers were visualized in the cell body layer of the different ganglia, and in the neural sheath of both the ganglia and the peripheral nerves. We propose a multifunctional involvement of FLI neurons and FMRFamide-like neuropeptides in the Helix nervous system: (i) a synaptic or modulatory role in axo-axonic interactions in the neuropil; (ii) a direct influence on neuronal cell bodies in the cortical layer, (iii) innervation of different peripheral organs; and (iv) remote neurohormonal control of peripheral events through the neural sheath.  相似文献   

11.
Histamine is known to be the neurotransmitter of insect photoreceptors. Histamine-like immunoreactivity is also found in a number of interneurons in the central nervous system of various insects. Here, we demonstrate by immunohistochemical techniques that, in Drosophila melanogaster (Acalypterae), most or all mechanosensory neurons of imaginal hair sensilla selectively bind antibodies directed against histamine. The histamine-like staining includes the cell bodies of these neurons as well as their axons, which form prominent fibre bundles in peripheral nerves, and their terminal projections in the central neuropil of head and thoracic ganglia. The specificity of the immunostaining is demonstrated by investigating a Drosophila mutant unable to synthesize histamine. Other mechanosensory organs, such as campaniform sensilla or scolopidial organs, do not stain. In the calypteran flies, Musca and Calliphora, we find no comparable immunoreactivity associated with either hair sensilla or the nerves entering the central nervous system, observations in agreement with earlier studies on Calliphora. Thus, histamine seems to be a major mechanosensory transmitter candidate of the adult nervous system of Drosophila, but apparently not of Musca or Calliphora.  相似文献   

12.
Summary The presence and distribution of neuropeptides belonging to the pancreatic polypeptide family have been demonstrated by an indirect immunofluorescence technique in the nervous systems of adult male and female Schistosoma mansoni. Seven antisera of differing regional specificity to pancreatic polypeptide (PP), peptide YY (PYY) and neuropeptide Y (NPY) were employed on both whole-mount and cryostat-sectioned material. Positive immunoreactivity (IR) was obtained with all antisera except an N-terminally-directed antiserum to NPY. In the CNS, immunoreactivity was restricted to cell bodies and nerve fibres in the anterior ganglia, central commissure and dorsal and ventral nerve cords of both sexes, whereas, in the PNS, positive-IR was present in the plexuses innervating the subtegumental musculature and the oral and ventral suckers. Intense immunoreactivity was observed in a plexus of nerve fibres and cell bodies in the lining of the gynaecophoric canal and in fine nerve fibres innervating the dorsal tubercles of the male. In contrast, in the female, strong immunoreactivity was evident in nerve plexuses innervating the lining of the ovovitelline duct and in the wall of the ootype, but most notably in a cluster of cells in the region of Mehlis' gland. Results suggest that molecules with C-terminal homology to the PP-family are present in S. mansoni. These peptides would appear to be important regulatory molecules in the parasite's nervous system and may play a role in the control of egg production.  相似文献   

13.
Summary The distribution of serotonin (5HT)-containing neurons in the central nervous system of the snail Helix pomatia has been determined in whole-mount preparations by use of immunocytochemical and in vivo 5,6-dihydroxy-tryptamine labelling. 5HT-immunoreactive neuronal somata occur in all but the buccal and pleural ganglia. Immunoreactive fibres are present throughout the central nervous system. The 5HT-immunoreactive neuronal somata characteristically appear in groups, located mainly in the cerebral, pedal, visceral and right parietal ganglia. The majority of 5HT-immunoreactive neurons is located in the pedal ganglia. Additionally a dense network of 5HT-immunoreactive varicose fibres is found in the neural sheath of the central nervous system including all the nerves and ganglia. The number and distribution of 5HT-immunoreactive neurons correlates with that demonstrated by 5,6-dihydroxytryptamine labelling method.  相似文献   

14.
The structure and organization of the nervous system has been documented for various helminth parasites. However, the neuroanatomy of the carcinogenic liver fluke, Opisthorchis viverrini has not been described. This study therefore investigated the organization of the nervous system of this fluke using cholinesterase activity, aminergic and peptidergic (FMRFamide-like peptides) immunostaining to tag major neural elements. The nervous system, as detected by acetylcholinesterase (AchE) reaction, was similar in newly excysted metacercariae, migrating juveniles and adult parasites. In these stages, there were three pairs (dorsal, ventral and lateral) of bilaterally symmetrical longitudinal nerve cords and two cerebral ganglia. The ventral nerve cords and the cerebral ganglia were well-developed and exhibited strong AchE reactivity, as well as aminergic and FMRFamide-like immunoreactivity. Numerous immunoreactive nerve cell bodies were observed around the inner surface of the ventral sucker. Fine FMRFamide-like peptides immunopositive nerve fiber was rarely observed. Overall, the organization of the nervous system of O. viverrini is similar to other trematodes.  相似文献   

15.
Summary Physiological and histochemical studies have recently supported the notion that nitric oxide (NO) is the transduction signal responsible for the non-adrenergic, non-cholinergic relaxation of the vasculature as well as the airways of the mammalian lung. We report the presence of immunoreactivity to NO synthase (NOS) in nerve cell bodies and nerve fibres in the neural plexus of the buccal cavity and lungs of the frog, Rana temporaria, using the indirect immunocytochemical technique of avidin-biotin and the NADPH-diaphorase technique. The neural ganglia located next to the muscle layer and within the connective tissue of the buccal cavity were partially immunoreactive for NOS. In the lungs, NOS immunoreactivity occurred in nerve cell bodies, as well as in both myelinated and unmyelinated nerve fibres. Fine nerve fibres immunoreactive to NOS were observed within the muscle fibre bundles and next to the respiratory epithelium. Both the presence of NOS immunoreactivity and the positive histochemical reaction for NADPH-diaphorase in the neural plexus of amphibian respiratory tract suggests a broad evolutionary role for NO as a peripheral neurotransmitter.  相似文献   

16.
Summary The localization of neurons containing serotonin in the central nervous system and the gonad of the scallop, Patinopecten yessoensis, was examined immunohistochemically. In the central nervous system a large number of immunoreactive perikarya were observed in the following regions: a part of the anterior lobe of the cerebral ganglion; the posterior lobe of the cerebral ganglion; the pedal ganglion; and the accessory ganglion. No immunoreactive perikarya were found in the visceral ganglion. Numerous immunoreactive fibers were revealed in the neuropil of all central ganglia. In the gonadal region immunoreactive fibers were distributed around the gonoduct and along the germinal epithelium.This work was supported by a grant from the Ministry of Education, Science and Culture, Japan  相似文献   

17.
The distribution of proctolin in the central nervous system of the hemipteran bug, Triatoma infestans, was studied by immunohistochemistry using the sensitive avidin‐biotin technique combined with nickel salt intensification of the reaction product. Proctolin was present in cells and fibers of the brain and ganglia. In the brain, protocerebral proctolin‐immunoreactive cell bodies were found in the pars intercerebralis, the optic lobes, and the lateral soma rind. The deutocerebrum showed positive somata in relation to the antennal motor center and the tritocerebrum had intense immunoreactive fibers but few positive cells. Proctolin‐immunoreactive cell bodies of different sizes were observed in the subesophageal ganglion. Large cell bodies were found mainly rostrally and beaded positive processes were present around the ventral border of the esophageal foramen and in the rostrolateral neuropil of this ganglion. Small‐ to medium‐sized positive somata were found in the posterior part of the prothoracic ganglion; some of these cells were sending immunoreactive processes to the central neuropil. The meso‐metathoracic‐abdominal ganglionic mass showed positive cells in all the neuromeres, where some of them were large and had thick immunoreactive granules. The results show that the labeling pattern of proctolin‐like immunoreactivity in Triatoma i. appears to be widespread and unique for its central nervous system. It is suggested that proctolin may serve neuroendocrine, integrative, and motor functions in the brain of T. infestans. J. Morphol. 240:39–47, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Summary Chains of segmental ganglia and various peripheral tissues from the leech (Hirudo medicinalis) were screened as whole-mount preparations for the presence of 5-hydroxytryptamine-like immunoreactivity. The gut was richly supplied with immunoreactive nerve fibres. Plexus of fibres, numerous of which were varicose, were found in the crop, with many immunopositive nerve cell bodies in the posterior region and a few in the anterior region. The intestine contained a few longitudinally oriented nerve fibres, while the rectum contained a dense network of non-varicose and varicose fibres. Fine immunopositive fibres were associated with the lateral blood vessel and reproductive organs. Many immunopositive nerve fibres ran in each of the paired connectives linking the segmental ganglia, and two fine varicose fibres were seen in Faivre's nerve. At least two immunopositive processes left each lateral segmental nerve and branched repeatedly, with many varicosities on the distal branches. The dorso-ventral and longitudinal body wall muscles both contained immunoreactive fibres, the plexus being more dense in the former muscle. The possible roles of the immunoreactive nerve fibres demonstrated in the various tissues of the leech have been discussed in relation to the known peripheral effects of serotoninergic neurone stimulation in the leech and to the actions of exogenously applied 5-hydroxytryptamine in these and other invertebrate tissues.  相似文献   

19.
The cellular localization of the biogenic amines dopamine and serotonin was investigated in the ventral nerve cord of the cricket, Gryllus bimaculatus, using antisera raised against dopamine, -tyrosine hydroxylase and serotonin. Dopamine-(n<-70) and serotonin-immunoreactive (n<-120) neurones showed a segmental arrangement in the ventral nerve cord. Some neuromeres, however, did not contain dopamine-immunoreactive cell bodies. The small number of stained cells allowed complete identification of brain and thoracic cells, including intersegmentally projecting axons and terminal arborizations. Dopamine-like immunostaining was found primarily in plurisegmental interneurones with axons descending to the soma-ipsilateral hemispheres of the thoracic and abdominal ganglia. In contrast, serotonin-immunostaining occurred predominantly in interneurones projecting via soma-contralaterally ascending axons to the thorax and brain. In addition, serotonin-immunoreactivity was also present in efferent cells and afferent elements. Serotonin-immunoreactive, but no dopamine-immunoreactive, varicose fibres were observed on the surface of some peripheral nerves. Varicose endings of both dopamine-and serotonin-immunoreactive neurones occurred in each neuromere and showed overlapping neuropilar projections in dorsal and medial regions of the thoracic ganglia. Ventral associative neuropiles lacked dopamine-like immunostaining but were innervated by serotonin-immunoreactive elements. A colocalization of the two amines was not observed. The topographic representation of neurone types immunoreactive for serotonin and dopamine is discussed with respect to possible modulatory functions of these biogenic amines in the central nervous system of the cricket.  相似文献   

20.
Summary Neuronal nitric oxide synthase (NOS), an enzyme capable of synthesizing nitric oxide, appears to be identical to neuronal NADPH diaphorase. The correlation was examined between NOS immunoreactivity and NADPH diaphorase staining in neurons of the ileum and colon of the guinea-pig. There was a one-to-one correlation between NOS immunoreactivity and NADPH diaphorase staining in all neurons examined; even the relative staining intensities obtained were similar with each technique. To determine whether pharmacological methods could be employed to demonstrate that NADPH diaphorase staining was due to the presence of NOS, tissue was pre-treated with NG-nitro-l-arginine, a NOS inhibitor, or l-arginine, a natural substrate of NOS. In these experiments on unfixed tissue, it was necessary to use dimethyl thiazolyl tetrazolium instead of nitroblue tetrazolium as the substrate for the NADPH diaphorase histochemical reaction. Neither treatment caused a significant decrease in the level of NADPH diaphorase staining, implying that arginine and NADPH interact at different sites on the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号