首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对经低温驯化和未经低温驯化的磷脂酶Dδ(PLDδ)基因敲除突变体与野生型植株进行冻害胁迫处理后,比较2种基因型植株的抗冻性。结果发现,经低温驯化的PLDδ敲除突变体的抗冻性明显低于野生型,而未经低温驯化的PLD礅除突变体与野生型的抗冻性没有显著差异,表明PLDδ参与植物的低温驯化过程。对PLDδ的作用途径进行分析,发现PLDδ在低温驯化过程中不参与抗氧化酶活性的调节,对脯氨酸和可溶性糖的积累起负调节作用,但是参与低温信号转导物质ABA诱导抗冻性的过程。  相似文献   

2.
对经低温驯化和未经低温驯化的磷脂酶Dδ (PLDδ)基因敲除突变体与野生型植株进行冻害胁迫处理后, 比较2种基因型植株的抗冻性。结果发现, 经低温驯化的PLDδ敲除突变体的抗冻性明显低于野生型, 而未经低温驯化的PLDδ敲除突变体与野生型的抗冻性没有显著差异, 表明PLDδ参与植物的低温驯化过程。对PLDδ的作用途径进行分析, 发现PLDδ在低温驯化过程中不参与抗氧化酶活性的调节, 对脯氨酸和可溶性糖的积累起负调节作用, 但是参与低温信号转导物质ABA诱导抗冻性的过程。  相似文献   

3.
Heterosis is defined as the increased vigour of hybrids in comparison to their parents. We investigated 24 F(1) hybrid lines of Arabidopsis thaliana generated by reciprocally crossing either C24 or Col with six other parental accessions (Can, Co, Cvi, Ler, Rsch, Te) that differ widely in their freezing tolerance. The crosses differed in the degree of heterosis for freezing tolerance, both in the non-acclimated state and after a 14 d cold acclimation period. Crosses with C24 showed more heterosis than crosses with Col, and heterosis was stronger in acclimated than in non-acclimated plants. Leaf content of soluble sugars and proline showed more deviation from mid-parent values in crosses involving C24 than in those involving Col, and deviations were larger in acclimated than in non-acclimated plants. There were significant correlations between the content of different sugars and leaf freezing tolerance, as well as between heterosis effects in freezing tolerance and sugar content. Flavonoid content and composition varied between accessions, and between non-acclimated and acclimated plants. In the crosses, large deviations from the mid-parent values in the contents of different flavonols occurred, and there were strikingly strong correlations between both flavonol content and freezing tolerance, and between heterosis effects in freezing tolerance and flavonol content.  相似文献   

4.
Arabidopsis thaliana is a geographically widely spread species consisting of local accessions differing both genetically and phenotypically. These differences may constitute environmental adaptations and a latitudinal cline in freezing tolerance has been shown previously. Many plants, including Arabidopsis, exhibit increased freezing tolerance after cold exposure (cold acclimation). Here we present evidence for geographical clines (both latitudinal and longitudinal) in acclimated (ACC) and non-acclimated (NA) freezing tolerance, estimated from electrolyte leakage measurements on 54 accessions. Leaf Pro contents were not correlated with freezing tolerance, while sugar contents (Glc, Fru, Suc, Raf) were in the ACC, but not the NA state. Expression levels of 14 cold-induced genes were investigated before and after 2 weeks of cold acclimation by quantitative RT-PCR. Expression of the CBF1, 2 and 3 genes was not correlated with freezing tolerance. The expression of some CBF-regulated (COR) genes, however, was correlated specifically with ACC freezing tolerance. A tight correlation between CBF and COR gene expression was only observed under non-acclimating conditions, where CBF and COR expression were also correlated with the expression of PRR5, a component of the circadian clock. Collectively, this study sheds new light on the molecular determinants of plant-freezing tolerance and cold acclimation and their geographical dependence.  相似文献   

5.
G Warren  R McKown  A L Marin    R Teutonico 《Plant physiology》1996,111(4):1011-1019
We screened for mutations deleterious to the freezing tolerance of Arabidopsis thaliana (L.) Heynh. ecotype Columbia. Tolerance was assayed by the vigor and regrowth of intact plants after cold acclimation and freezing. From a chemically mutagenized population, we obtained 13 lines of mutants with highly penetrant phenotypes. In 5 of these, freezing sensitivity was attributable to chilling injury sustained during cold acclimation, but in the remaining 8 lines, the absence of injury prior to freezing suggested that they were affected specifically in the development of freezing tolerance. In backcrosses, freezing sensitivity from each line segregated as a single nuclear mutation. Complementation tests indicated that the 8 lines contained mutations in 7 different genes. The mutants' freezing sensitivity was also detectable in the leakage of electrolytes from frozen leaves. However, 1 mutant line that displayed a strong phenotype at the whole-plant level showed a relatively weak phenotype by the electrolyte leakage assay.  相似文献   

6.
Phospholipase D (PLD; EC 3.1.4.4) plays an important role in membrane lipid hydrolysis and in mediation of plant responses to a wide range of stresses. PLDalpha1 abrogation through antisense suppression in Arabidopsis thaliana resulted in a significant increase in freezing tolerance of both non-acclimated and cold-acclimated plants. Although non-acclimated PLDalpha1-deficient plants did not show the activation of cold-responsive C-repeat/dehydration-responsive element binding factors (CBFs) and their target genes (COR47 and COR78), they did accumulate osmolytes to much higher levels than did the non-acclimated wild-type plants. However, a stronger expression of COR47 and COR78 in response to cold acclimation and to especially freezing was observed in PLDalpha1-deficient plants. Furthermore, a slower activation of CBF1 was observed in response to cold acclimation in these plants compared to the wild-type plants. Typically, cold acclimation resulted in a higher accumulation of osmolytes in PLDalpha1-deficient plants than in wild-type plants. Inhibition of PLD activity by using lysophosphatidylethanolamine (LPE) also increased freezing tolerance of Arabidopsis, albeit to a lesser extent than did the PLD antisense suppression. Exogenous LPE induced expression of COR15a and COR47 in the absence of cold stimulus. These results suggest that PLDalpha1 plays a key role in freezing tolerance of Arabidopsis by modulating the cold-responsive genes and accumulation of osmolytes.  相似文献   

7.
8.
Heterosis is broadly defined as the increased vigour of hybrids in comparison to their parents. In the model plant Arabidopsis thaliana, a significant heterosis effect on leaf-freezing tolerance was observed in the F(1) generation of a cross between the accessions Columbia-0 (Col) and C24. Parental Col plants were significantly more freezing-tolerant than C24 plants in both the acclimated and non-acclimated (NA) states. Mid-parent heterosis was observed in the F(1) plants, both in the basic tolerance of non-adapted plants and in freezing tolerance after cold acclimation. Best-parent heterosis, on the other hand, was only found after cold acclimation. The heterosis effect was reduced in the F(2) populations such that only mid-parent heterosis was evident. The leaf content of soluble sugars (fructose (Fru), glucose (Glc), sucrose (Suc) and raffinose (Raf)) increased dramatically in the F(1) plants after cold acclimation as compared to the parental lines. The content of proline (Pro), however, was only moderately increased in the F(1) plants under the same conditions. Correlation analyses showed that only Raf content was consistently related to leaf-freezing tolerance in both the acclimated and NA states. A quantification of mRNA levels in leaves of parental and F(1) lines using quantitative real-time RT-PCR showed no clear indication for an involvement of the investigated genes (CBF (C-repeat binding factor)1, CBF2, (cold-regulated protein (COR) 6.6, COR15a, COR15b, COR47 and COR78) in the heterosis effect.  相似文献   

9.
The sfr3 mutation causes freezing sensitivity in Arabidopsis thaliana. Mapping, sequencing, and transgenic complementation showed sfr3 to be a missense mutation in ACC1, an essential gene encoding homomeric (multifunctional) acetyl-CoA carboxylase. Cuticle permeability was compromised in the sfr3 mutant when plants were grown in the cold but not in the warm. Wax deposition on the inflorescence stem of cold-grown sfr3 plants was inhibited and the long-chain components of their leaf cuticular wax were reduced compared with wild-type plants. Thus, freezing sensitivity of sfr3 appears, from these results, to be due to cuticular deficiencies that develop during cold acclimation. These observations demonstrated the essential role of the cuticle in tolerance to freezing and drought.  相似文献   

10.
Abstract When resources are limited, there is a trade-off between growth/reproduction and stress defense in plants. Most temperate plant species, including Arabidopsis thaliana, can enhance freezing tolerance through cold acclimation at low but nonfreezing temperatures. Induction of the cold acclimation pathway should be beneficial in environments where plants frequently encounter freezing stress, but it might represent a cost in environments where freezing events are rare. In A. thaliana, induction of the cold acclimation pathway critically involves a small subfamily of genes known as the CBFs. Here we test for a cost of cold acclimation by utilizing (1) natural accessions of A. thaliana that originate from different regions of the species' native range and that have experienced different patterns of historical selection on their CBF genes and (2) transgenic CBF overexpression and T-DNA insertion (knockdown/knockout) lines. While benefits of cold acclimation in the presence of freezing stress were confirmed, no cost of cold acclimation was detected in the absence of freezing stress. These findings suggest that cold acclimation is unlikely to be selected against in warmer environments and that naturally occurring mutations disrupting CBF function in the southern part of the species range are likely to be selectively neutral. An unanticipated finding was that cold acclimation in the absence of a subsequent freezing stress resulted in increased fruit production, that is, fitness.  相似文献   

11.
The effect of thermal acclimation on trehalose accumulation and the acquisition of thermotolerance was studied in three species of entomopathogenic nematodes adapted to either cold or warm temperatures. All three Steinernema species accumulated trehalose when acclimated at either 5 or 35 degrees C, but the amount of trehalose accumulation differed by species and temperature. The trehalose content of the cold adapted Steinernema feltiae increased by 350 and 182%, of intermediate Steinernema carpocapsae by 146 and 122% and of warm adapted Steinernema riobrave by 30 and 87% over the initial level (18.25, 27.24 and 23.97 microg trehalose/mg dry weight, respectively) during acclimation at 5 and 35 degrees C, respectively. Warm and cold acclimation enhanced heat (40 degrees C for 8h) and freezing (-20 degrees C for 4h) tolerance of S. carpocapsae and the enhanced tolerance was positively correlated with the increased trehalose levels. Warm and cold acclimation also enhanced heat but not freezing tolerance of S. feltiae and the enhanced heat tolerance was positively correlated with the increased trehalose levels. In contrast, warm and cold acclimation enhanced the freezing but not heat tolerance of S. riobrave, and increased freezing tolerance of only warm acclimated S. riobrave was positively correlated with the increased trehalose levels. The effect of acclimation on maintenance of original virulence by either heat or freeze stressed nematodes against the wax moth Galleria mellonella larvae was temperature dependent and differed among species. During freezing stress, both cold and warm acclimated S. carpocapsae (84%) and during heat stress, only warm acclimated S. carpocapsae (95%) maintained significantly higher original virulence than the non-acclimated (36 and 47%, respectively) nematodes. Both cold and warm acclimated S. feltiae maintained significantly higher original virulence (69%) than the non-acclimated S. feltiae (0%) during heat but not freezing stress. In contrast, both warm and cold acclimated S. riobrave maintained significantly higher virulence (41%) than the non-acclimated (14%) nematodes during freezing, but not during heat stress. Our data indicate that trehalose accumulation is not only a cold associated phenomenon but is a general response of nematodes to thermal stress. However, the extent of enhanced thermal stress tolerance conferred by the accumulated trehalose differs with nematode species.  相似文献   

12.
Knaupp M  Mishra KB  Nedbal L  Heyer AG 《Planta》2011,234(3):477-486
A role of non-reducing sugars like sucrose and raffinose in the protection of plant cells against damage during freezing has been proposed for many species, but reports on physiological effects are conflicting. Non-aqueous fractionation of mesophyll cell compartments in Arabidopsis thaliana was used to show that sucrose and raffinose accumulate in plastids during low temperatures, pointing to a physiological role in protecting the photosynthetic apparatus. Comparing a previously described raffinose synthase (RS) mutant of A. thaliana with its corresponding wild type, accession Col-0, revealed that a lack of raffinose has no effect on electrolyte leakage from leaf cells after freeze–thaw cycles, supporting that raffinose is not essential for protecting the plasma membrane. However, in situ chlorophyll fluorescence showed that maximum quantum yield of PS II photochemistry (F v/F m) and other fluorescence parameters of cold acclimated leaves subjected to freeze–thaw cycles were significantly lower in the raffinose synthase mutant than in the corresponding wild type, indicating that raffinose is involved in stabilizing PS II of cold acclimated leaf cells against damage during freezing.  相似文献   

13.
Potato is a species commonly cultivated in temperate areas where the growing season may be interrupted by frosts, resulting in loss of yield. Cultivated potato, Solanum tuberosum, is freezing sensitive, but it has several freezing-tolerant wild potato relatives, one of which is S. commersonii. Our study was aimed to resolve the relationship between enhanced freezing tolerance, acclimation capacity and capacity to tolerate active oxygen species. To be able to characterize freezing tolerant ideotypes, a potato population (S1), which segregates in freezing tolerance, acclimation capacity and capacity to tolerate superoxide radicals, was produced by selfing a somatic hybrid between a freezing-tolerant Solanum commersonii (LT50=-4.6°C) and -sensitive S. tuberosum (LT50=-3.0°C). The distribution of non-acclimated freezing tolerance (NA-freezing tolerance) of the S1 population varied between the parental lines and we were able to identify genotypes, having significantly high or low NA-freezing tolerance. When a population of 25 genotypes was tested both for NA-freezing and paraquat (PQ) tolerance, no correlation was found between these two traits (R = 0.02). However, the most NA-freezing tolerant genotypes were also among the most PQ tolerant plants. Simultaneously, one of the NA-freezing sensitive genotypes (2022) (LT50=-3.0°C) was observed to be PQ tolerant. These conflicting results may reflect a significant, but not obligatory, role of superoxide scavenging mechanisms in the NA-freezing tolerance of S. commersonii. The freezing tolerance after cold acclimation (CA-freezing tolerance) and the acclimation capacity (AC) was measured after acclimation for 7 days at 4/2°C. Lack of correlation between NA-freezing tolerance and AC (R =-0.05) in the S1 population points to independent genetic control of NA-freezing tolerance and AC in Solanum sp. Increased freezing tolerance after cold acclimation was clearly related to PQ tolerance of all S1 genotypes, especially those having good acclimation capacity. The rapid loss of improved PQ tolerance under deacclimation conditions confirmed the close relationship between the process of cold acclimation and enhanced PQ tolerance. Here, we report an increased PQ tolerance in cold-acclimated plants compared to non-acclimated controls. However, we concluded that high PQ tolerance is not a good indicator of actual freezing tolerance and should not be used as a selectable marker for the identification of a freezing-tolerant genotype.  相似文献   

14.
The responses to photoinhibition of photosynthesis at low temperature and subsequent recovery were examined in Arabidopsis thaliana (ecotype Columbia) developed at 4°C cold-acclimating conditions, 23°C non-acclimating conditions and for non-acclimated plants shifted to 4°C (cold-shifted). These responses were determined in planta using Chl fluorescence imaging. We show that cold acclimation results in an increased tolerance to photoinhibition in comparison with non-acclimated plants and that growth and development at low temperature is essential for this to occur. Cold-shifted plants were not as tolerant as the cold-acclimated plants. In addition, we demonstrate this tolerance is as a result of growth under high PSII excitation pressure, that can be modulated by growth temperature or growth irradiance. Cold-acclimated and cold-shifted plants fully recover from photoinhibition in the dark, whereas non-acclimated plants show reduced levels of recovery and demonstrate a requirement for light. The role of the PSII repair cycle, PSII quenching centres, and the use of Chl fluorescence imaging to monitor photoinhibitory responses in planta are discussed.  相似文献   

15.
16.
Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号