首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligament balancing in total knee arthroplasty may have an important influence on joint stability and prosthesis lifetime. In order to provide quantitative information and assistance during ligament balancing, a device that intraoperatively measures knee joint forces and moments was developed. Its performance and surgical advantages were evaluated on six cadaver specimens mounted on a knee joint loading apparatus allowing unconstrained knee motion as well as compression and varus-valgus loading. Four different experiments were performed on each specimen. (1) Knee joints were axially loaded. Comparison between applied and measured compressive forces demonstrated the accuracy and reliability of in situ measurements (1.8N). (2) Assessment of knee stability based on condyle contact forces or varus-valgus moments were compared to the current surgical method (difference of varus-valgus loads causing condyle lift-off). The force-based approach was equivalent to the surgical method while the moment-based, which is considered optimal, showed a tendency of lateral imbalance. (3) To estimate the importance of keeping the patella in its anatomical position during imbalance assessment, the effect of patellar eversion on the mediolateral distribution of tibiofemoral contact forces was measured. One fourth of the contact force induced by the patellar load was shifted to the lateral compartment. (4) The effect of minor and major medial collateral ligament releases was biomechanically quantified. On average, the medial contact force was reduced by 20% and 46%, respectively. Large variation among specimens reflected the difficulty of ligament release and the need for intraoperative force monitoring. This series of experiments thus demonstrated the device's potential to improve ligament balancing and survivorship of total knee arthroplasty.  相似文献   

2.
Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implanted knee to instantaneously predict joint mechanics in an efficient manner. Finite element methods were combined with Latin hypercube sampling and regression analyses to produce modeling equations relating nine implant design and six surgical alignment parameters to tibiofemoral (TF) joint mechanics outcomes during a deep knee bend. A SFM was developed and TF contact mechanics, kinematics, and soft tissue loads were instantaneously predicted from the model. Average normalized root-mean-square error predictions were between 2.79% and 9.42%, depending on the number of parameters included in the model. The statistical shape-function model generated instantaneous joint mechanics predictions using a maximum of 130 training simulations, making it ideally suited for integration into a patient-specific design and alignment optimization pipeline. Such a tool may be used to optimize kinematic function to achieve more natural motion or minimize implant wear, and may aid the engineering and clinical communities in improving patient satisfaction and surgical outcomes.  相似文献   

3.

Background

Thirty thousand knee replacements are performed annually in the UK. There is uncertainty as to the best surgical approach to the knee joint for knee arthroplasty. We planned a randomised controlled trial to compare a standard medial parapatellar arthrotomy with sub-vastus arthrotomy for patients undergoing primary total knee arthroplasty in terms of short and long term knee function.

Methods

Patients undergoing primary total knee arthroplasty at the local NHS Trust are to be recruited into the study. Patients are to be randomised into either the subvastus or medial parapatellar approache to knee arthroplasty. The primary outcome measures will be the American Knee Society and WOMAC Scores. The secondary outcome measures will be patient based measures of EuroQol and SF-36. All outcomes will be measured pre-operatively, 1, 6, 12 and 52 weeks post-operatively. We will also review pain intensity using a pain and analgesia diary. Ease of surgical exposure and complications will also be analysed.

Discussion

Evidence is lacking concerning the best surgical approach to the knee joint for patients undergoing primary total knee replacement. This pragmatic randomised trial tests the hypothesis that the sub-vastus approach is significantly superior to the standard medial parapatellar approach in terms of short and long term knee function.  相似文献   

4.
JAWS coordinates chondrogenesis and synovial joint positioning   总被引:1,自引:0,他引:1  
Properly positioned synovial joints are crucial to coordinated skeletal movement. Despite their importance for skeletal development and function, the molecular mechanisms that underlie joint positioning are not well understood. We show that mice carrying an insertional mutation in a previously uncharacterized gene, which we have named Jaws (joints abnormal with splitting), die perinatally with striking skeletal defects, including ectopic interphalangeal joints. These ectopic joints develop along the longitudinal axis and persist at birth, suggesting that JAWS is uniquely required for the orientation and consequent positioning of interphalangeal joints within the endochondral skeleton. Jaws mutant mice also exhibit severe chondrodysplasia characterized by delayed and disorganized maturation of growth plate chondrocytes, together with impaired chondroitin sulfation and abnormal metabolism of the chondroitin sulfate proteoglycan aggrecan. Our findings identify JAWS as a key regulator of chondrogenesis and synovial joint positioning required for the restriction of joint formation to discrete stereotyped locations in the embryonic skeleton.  相似文献   

5.
Hox11 genes are essential for zeugopod skeletal element development but their roles in synovial joint formation remain largely unknown. Here, we show that the elbow and knee joints of mouse embryos lacking all Hox11 paralogous genes are specifically remodeled and reorganized. The proximal ends of developing mutant ulna and radius elements became morphologically similar and formed an anatomically distinct elbow joint. The mutant ulna lacked the olecranon that normally attaches to the triceps brachii muscle tendon and connects the humerus to the ulna. In its place, an ulnar patella-like element developed that expressed lubricin on its ventral side facing the joint and was connected to the triceps muscle tendon. In mutant knees, both tibia and fibula fully articulated with an enlarged femoral epiphyseal end that accommodated both elements, and the neo-tripartite knee joint was enclosed in a single synovial cavity and displayed an additional anterior ligament. The mutant joints also exhibited a different organization of the superficial zone of articular cartilage that normally exerts an anti-friction function. In conclusion, Hox11 genes co-regulate and coordinate the development of zeugopod skeletal elements and adjacent elbow and knee joints, and dictate joint identity, morphogenesis and anatomical and functional organization. Notably, the ulnar patella and tripartite knee joints in the mouse mutants actually characterize several lower vertebrates, including certain reptiles and amphibians. The re-emergence of such anatomical structures suggests that their genetic blueprint is still present in the mouse genome but is normally modified to the needs of the mammalian joint-formation program by distinct Hox11 function.  相似文献   

6.
A validated three-dimensional computational model of a human knee joint   总被引:7,自引:0,他引:7  
This paper presents a three-dimensional finite element tibio-femoral joint model of a human knee that was validated using experimental data. The geometry of the joint model was obtained from magnetic resonance (MR) images of a cadaveric knee specimen. The same specimen was biomechanically tested using a robotic/universal force-moment sensor (UFS) system and knee kinematic data under anterior-posterior tibial loads (up to 100 N) were obtained. In the finite element model (FEM), cartilage was modeled as an elastic material, ligaments were represented as nonlinear elastic springs, and menisci were simulated by equivalent-resistance springs. Reference lengths (zero-load lengths) of the ligaments and stiffness of the meniscus springs were estimated using an optimization procedure that involved the minimization of the differences between the kinematics predicted by the model and those obtained experimentally. The joint kinematics and in-situ forces in the ligaments in response to axial tibial moments of up to 10 Nm were calculated using the model and were compared with published experimental data on knee specimens. It was also demonstrated that the equivalent-resistance springs representing the menisci are important for accurate calculation of knee kinematics. Thus, the methodology developed in this study can be a valuable tool for further analysis of knee joint function and could serve as a step toward the development of more advanced computational knee models.  相似文献   

7.
The hamstring muscles have the potential to counteract anterior shear forces at the knee joint by co-contracting during knee extension efforts. Such a muscle recruitment pattern might protect the anterior cruciate ligament (ACL) by reducing its strain. In this study we investigated to what extent co-activation of the knee flexors during extension efforts is compatible with the hypothesis that this co-activation serves to counteract anterior tibial shear forces during isometric knee extension efforts in healthy subjects. To this aim, it is investigated whether co-activation varies with the required knee extension moment, with the knee joint angle, and with the position of the external flexing force relative to the knee joint. With unaltered moment and muscle activation, distal positioning of the flexing force on the tibia causes higher resultant (muscular plus external) forward shear forces at the knee as compared to proximal positioning. In ten subjects, knee flexor and extensor EMG was measured during a quasi-isometric positioning task for a range (5-50 degrees) of knee flexion angles. It was found that the co-activation of the knee flexors increased with the extension moment, but this increase was less than proportional (p<0.001). The extension moment increased 2.7 to 3.4 times, whereas the activation of Biceps Femoris and Semitendinosus increased only a factor 1.3 to 2.0 (joint angle dependent). Furthermore, a strong increase in co-activation was seen near full extension of the knee joint. The position of the external extension load on the tibia did not affect the level of co-contraction. It is argued that these results do not suggest a recruitment pattern that is directed at reduction of anterior shear forces in the knee joint during sub-maximal isometric knee extension efforts in healthy subjects.  相似文献   

8.
Ligaments are specialized connective tissues with very interesting biomechanical properties. They have the ability to adapt to the complex functions that each are required to perform. While ligaments were once thought to be inert, they are in fact responsive to many local and systemic factors that influence their function within the organism. Injury to a ligament results in a drastic change in its structure and physiology and creates a situation where ligament function is restored by the formation of scar tissue that is biologically and biomechanically inferior to the tissue it replaces. This article will briefly review the basic structure, physiology and function of normal versus healing knee ligaments, referring specifically to what is known about two of the most extensively studied and clinically relevant knee ligaments, the anterior cruciate (ACL) and medial collateral (MCL) ligaments of the knee. Those readers wishing for more comprehensive sources of information on ligament biology and biomechanics are referred to many excellent reviews on these topics.  相似文献   

9.
Major joints, such as the knee, shoulder, and spine, can buckle along the translational degrees-of-freedom (DoF), causing injury to ligaments and other passive tissues. Despite this, stability and impedance analyses have focused primarily on the rotational DoF. As such, mathematical models quantifying musculotendon translational stiffnesses remain limited and, to our knowledge, there are no published works that explicitly describes the interactions between DoF. Using an energy approach, we derived a six DoF stiffness tensor and provided the necessary equations needed to quantify the musculotendon stiffness of any joint. Using a knee model, we then compared the derived stiffness tensor against two commonly used measures: one that excludes translational DoF and another that excludes interactions between DoF. We found that both of these measures had large over-estimations of stiffness, particularly for the rotational DoF, compared to our derived tensor. These findings indicate that previous analyses may have found rotational DoF to be stable when they were unstable.  相似文献   

10.
Previous in vivo studies have observed that current designs of posterior stabilised (PS) total knee replacements (TKRs) may be ineffective in restoring normal kinematics in Late flexion. Computer-based models can prove a useful tool in improving PS knee replacement designs. This study investigates the accuracy of a two-dimensional (2D) sagittal plane model capable of predicting the functional sagittal plane kinematics of PS TKR implanted knees against direct in vivo measurement. Implant constraints are often used as determinants of anterior–posterior tibio-femoral positioning. This allowed the use of a patello-femoral modelling approach to determine the effect of implant constraints. The model was executed using motion simulation software which uses the constraint force algorithm to achieve a solution. A group of 10 patients implanted with Scorpio PS implants were recruited and underwent fluoroscopic imaging of their knees. The fluoroscopic images were used to determine relative implant orientation using a three-dimensional reconstruction method. The determined relative tibio-femoral orientations were then input to the model. The model calculated the patella tendon angles (PTAs) which were then compared with those measured from the in vivo fluoroscopic images. There were no significant differences between the measured and calculated PTAs. The average root mean square error between measured and modelled ranged from 1.17° to 2.10° over the flexion range. A sagittal plane patello-femoral model could conceivably be used to predict the functional 2D kinematics of an implanted knee joint. This may prove particularly useful in optimising PS designs.  相似文献   

11.
《IRBM》2020,41(3):133-140
The estimation of joint angle ratios for healthy and afflicted subjects in characterizing the human gait has great significance in the development of limb prosthetics. The two dimensional analysis of human gait was performed and the ratio of hip to knee, knee to ankle, hip to ankle as well as the time taken for achieving a gait were determined. The percentage of affliction was computed based on the joint angle ratios and comparison was made with healthy gait. The joint ratios were fed as input to the driving system which comprises of six DC motors for the positioning of knee, hip and ankle during gait. Then different control strategies like P, PI and PID were tested. The t-test and ANOVA analysis were conducted between healthy, afflicted and PID controller to determine the significant difference between their joint angle ratios. The estimation of joint angle ratio improved the accuracy of the control system drive (desired position of knee, hip and ankle motors). The presence of oscillations in the output response was reduced for P and PI controllers. The implementation of PID controller eliminated the presence of peak overshoot and more settling time. Thus the joint angle ratio provides the best possible assistance to the disabled persons by appropriately compensating the affliction.  相似文献   

12.
Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p < 0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom.  相似文献   

13.
Acceptance of the klap speed skate was fully realized on the world speed skating scene in 1997. However, one of the most important unknowns regarding the klapskate was the positioning of the point of foot rotation (pivot point), which is believed to play an important role in optimizing klapskate performance. The purposes of this study were to explore the ankle, knee, and hip joint mechanical changes that occurred when the pivot point location was modified, and to determine whether maximal ankle torques provide predictive ability as to where the optimal pivot point positioning is for a skater. We tested 16 proficient skaters at three pivot point PP) locations, ranging from just in front of the metatarsal-phalangeal joint to just in front of the first phalangeal joint. Of the 16 skaters, 10 were tested at a fourth position; tip of the toe. Push phase kinetics and kinematics were measured on a modified slide board. The optimal PP for each skater was defined as the position that allowed him to generate the most total push energy. Maximum voluntary static torque measures of the ankle and knee were collected on a Biodex dynamometer. Overall, anterior pivot point shifting led to a significant increase in ankle energy generated and a decrease in knee energy generated, with no significant change at the hip joint. We found no significant correlations between the static strength measures and the skaters' optimal pivot points.  相似文献   

14.
Hindlimb segmental kinematics and stride characteristics are quantified in several quail locomoting on a treadmill over a six-fold increase in speed. These data are used to describe the kinematics of a walking stride and to identify which limb elements are used to change stride features as speed increases. In quail, the femur does not move during locomotion and the tarsometatarsus-phalangeal joint is a major moving joint; thus, quail have lost the most proximal moving joint and added one distally. The tibiotarsus and tarsometatarsus act together as a fixed strut swinging from the knee during stance phase (the ankle angle remains constant at a given speed) and the tarsometatarsus-phalangeal joint appears to have a major role in increasing limb length during the propulsive phase of the stride. Speed is increased with greater knee extension and by lengthening the tibiotarsus/tarsometatarsus via increased ankle extension at greater speeds. Because the femur is not moved and three distal elements are, quail move the limb segments through a stride and increase speed in a way fundamentally different from other nonavian vertebrates. However, the three moving joints in quail (the knee, ankle, and tarsometatarsophangeal joint) have strikingly similar kinematics to the analogous moving joints (the hip, knee, and ankle) in other vertebrates. Comparisons to other vertebrates indicate that birds appear to have two modes of limb function (three- and four-segment modes) that vary with speed and locomotory habits.  相似文献   

15.
Strength requirements for internal and external prostheses   总被引:4,自引:0,他引:4  
Throughout the history of development of joint replacement implants and external prostheses there have been mechanical failures due to a discrepancy between material strength, cross-sectional characteristics and the loads developed in normal or abnormal function by the patient utilising the device. Particularly for internal prostheses attention is being paid at the present time to wear characteristics and the requirements for the articulating surfaces and the volume of wear particles produced during tests simulating the use of the device within the patient. The particular importance of the wear particles is that they seem to be associated with accelerated resorption of bone at areas essential for successful fixation of the implant within it. This article will consider joint replacements at the knee and hip and external prostheses for the leg. If failure due to external trauma is ignored the loads to be considered in testing standards correspond in implants to the muscular and ligamentous forces related to the forces developed between ground and foot and to the bending moments in the structure of leg prostheses. Generally it can be assumed that the treatment of the patient following trauma is more easily accomplished and more likely to be successful if the prosthesis has failed and not the bony structure of the patient. However, the author is unaware that these devices have ever been designed to have lower intrinsic strength than the anatomical structures to which they are connected; indeed in many cases particularly for implants they are much stronger than the bone to which they are connected. The major difficulty in rational design of prosthetic devices has been uncertainty about the importance of occasionally applied loads of a high value relative to those on a frequent basis and also to the frequency of application of these overloads. In this paper consideration is given to methods of determination of load systems relevant to the mechanical performance of implanted joint replacements at the hip and the knee and external prostheses for leg amputees. New data are presented relating to walking, other daily activities and the corresponding frequency of occurrence of these. Loading data on implants obtained by various biomechanical models is compared and related to the loads actually measured by implanted transducers. The philosophy of the standardised test load systems and the performance requirements is reviewed.  相似文献   

16.
The purpose of this study was to examine the effect of different muscle contraction modes and intensities on patellar tendon moment arm length (d(PT)). Five men performed isokinetic concentric, eccentric and passive knee extensions at an angular velocity of 60 deg/s and six men performed gradually increasing to maximum effort isometric muscle contractions at 90( composite function) and 20( composite function) of knee flexion. During the tests, lateral X-ray fluoroscopy imaging was used to scan the knee joint. The d(PT) differences between the passive state and the isokinetic concentric and extension were quantified at 15( composite function) intervals of knee joint flexion angle. Furthermore, the changes of the d(PT) as a function of the isometric muscle contraction intensities were determined during the isometric knee extension at 90( composite function) and 20( composite function) of knee joint flexion. Muscle contraction-induced changes in knee joint flexion angle during the isometric muscle contraction were also taken into account for the d(PT) measurements. During the two isometric knee extensions, d(PT) increased from rest to maximum voluntary muscle contraction (MVC) by 14-15%. However, when changes in knee joint flexion angle induced by the muscle contraction were taken into account, d(PT) during MVC increased by 6-26% compared with rest. Moreover, d(PT) increased during concentric and eccentric knee extension by 3-15%, depending on knee flexion angle, compared with passive knee extension. These findings have important implications for estimating musculoskeletal loads using modelling under static and dynamic conditions.  相似文献   

17.
Accurate in vivo measurement of tibiofemoral forces is important in total knee arthroplasty. These forces determine polyethylene stresses and cold-flow, stress distribution in the implant, and stress transfer to the underlying implant bone interface. Theoretic estimates of tibiofemoral forces have varied widely depending on the mathematical models used. The six degrees of freedom of motion, complex articular surface topography, changing joint-contact position, intra- and extra-articular ligaments, number of muscles crossing the knee joint, and the presence of the patellofemoral joint contribute to the difficulty in developing reliable models of the knee. A prototype instrumented total knee replacement tibial prosthesis was designed, manufactured, and tested. This prosthesis accurately measured all six components of tibial forces (R2>0.997). The prosthesis was also instrumented with an internal microtransmitter for wireless data transmission. Remote powering of the sealed implanted electronics was achieved using magnetic coil induction. This device can be used to validate existing models of the knee that estimate these forces or to develop more accurate models. In conjunction with kinematic data, accurate tibiofemoral force data may be used to design more effective knee-testing rigs and wear simulators. Additional uses are intraoperative measurement of forces to determine soft-tissue balancing and to evaluate the effects of rehabilitation, external bracing, and athletic activities, and activities of daily living.  相似文献   

18.
Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do not span. However, few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to use a muscle-actuated forward dynamics simulation of walking to identify how individual muscles contribute to the axial tibio-femoral joint force. The simulation results showed that the vastii muscles are the primary contributors to the axial joint force in early stance while the gastrocnemius is the primary contributor in late stance. The tibio-femoral joint force generated by these muscles was at times greater than the muscle forces themselves. Muscles that do not cross the knee joint (e.g., the gluteus maximus and soleus) also have significant contributions to the tibio-femoral joint force through their contributions to the ground reaction forces. Further, small changes in walking kinematics (e.g., knee flexion angle) can have a significant effect on the magnitude of the knee joint forces. Thus, altering walking mechanics and muscle coordination patterns to utilize muscle groups that perform the same biomechanical function, yet contribute less to the knee joint forces may be an effective way to reduce knee joint loading during walking.  相似文献   

19.
Patterns of fibre elongation and orientation for the cruciate and collateral ligaments of the human knee joint and for the patellar tendon have not yet been established in three-dimensions. These patterns are essential for understanding thoroughly the contribution of these soft tissues to joint function and of value in surgical treatments for a more conscious assessment of the knee status. Measurements from 10 normal cadaver knees are here reported using an accurate surgical navigation system and consistent anatomical references, over a large flexion arc, and according to current recommended conventions. The contours of relevant sub-bundles were digitised over the corresponding origins and insertions on the bones. Representative fibres were calculated as the straight line segments joining the centroids of these attachment areas. The most isometric fibre was also taken as that whose attachment points were at the minimum change in length over the flexion arc. Changes in length and orientation of these fibres were reported versus the flexion angle. A good general repeatability of intra- and inter-specimens was found. Isometric fibres were found in the locations reported in the literature. During knee flexion, ligament sub-bundles slacken in the anterior cruciate ligament, and in the medial and lateral collateral ligaments, whereas they tighten in the posterior cruciate ligament. In each cruciate ligament the two compounding sub-bundles have different extents for the change in fibre length, and also bend differently from each other on both tibial planes. In the collateral ligaments and patellar tendon all fibres bend posteriorly. Patellar tendon underwent complex changes in length and orientation, on both the tibial sagittal and frontal planes. For the first time thorough and consistent patterns of geometrical changes are provided for the main knee ligaments and tendons after careful fibre mapping.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号