共查询到20条相似文献,搜索用时 15 毫秒
1.
SNAREs are the core machinery mediating membrane fusion. In this review, we provide an update on the recent progress on SNAREs regulating membrane fusion events, especially the more detailed fusion processes dissected by well‐developed biophysical methods and in vitro single molecule analysis approaches. We also briefly summarize the relevant research from Chinese laboratories and highlight the significant contributions on our understanding of SNARE‐mediated membrane trafficking from scientists in China. 相似文献
2.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。 相似文献
3.
拟南芥SNARE因子在膜泡运输中的功能 总被引:1,自引:0,他引:1
高等植物细胞含有复杂的内膜系统, 通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控, 如Coat、SM、Tether、SNARE和Rab蛋白等, 其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白, 分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE, 两类SNARE结合形成SNARE复合体, 促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。 相似文献
4.
The sorting of post‐Golgi R‐SNAREs (vesicle‐associated membrane protein (VAMP)1, 2, 3, 4, 7 and 8) is still poorly understood. To address this, we developed a system to investigate their localization, trafficking and cell‐surface levels. Here, we show that the distribution and internalization of VAMPs 3 and 8 are determined solely through a new conserved mechanism that uses coiled‐coil interactions, and that VAMP4 does not require these interactions for its trafficking. We propose that VAMPs 3 and 8 are trafficked while in a complex with Q‐SNAREs. We also show that the dileucine motif of VAMP4 is required for both its internalization and retrieval to the trans‐Golgi network. However, when the dileucine motif is mutated, the construct can still be internalized potentially through coiled‐coil interactions with Q‐SNAREs. 相似文献
5.
Apical and basolateral proteins are maintained within distinct membrane subdomains in polarized epithelial cells by biosynthetic and postendocytic sorting processes. Sorting of basolateral proteins in these processes has been well studied; however, the sorting signals and mechanisms that direct proteins to the apical surface are less well understood. We previously demonstrated that an N-glycan-dependent sorting signal directs the sialomucin endolyn to the apical surface in polarized Madin-Darby canine kidney cells. Terminal processing of a subset of endolyn's N-glycans is key for polarized biosynthetic delivery to the apical membrane. Endolyn is subsequently internalized, and via a cytoplasmic tyrosine-based sorting motif is targeted to lysosomes from where it constitutively cycles to the cell surface. Here, we examine the polarized sorting of endolyn along the postendocytic pathway in polarized cells. Our results suggest that similar N-glycan sorting determinants are required for apical delivery of endolyn along both the biosynthetic and the postendocytic pathways. 相似文献
6.
Mattila PE Youker RT Mo D Bruns JR Cresawn KO Hughey RP Ihrke G Weisz OA 《Traffic (Copenhagen, Denmark)》2012,13(3):433-442
Many newly synthesized membrane proteins traverse endocytic intermediates en route to the surface in polarized epithelial cells; however, the biosynthetic itinerary of secreted proteins has not been elucidated. We monitored the trafficking route of two secreted proteins with different apical sorting signals: the N-glycan-dependent cargo glycosylated growth hormone (gGH) and Ensol, a soluble version of endolyn whose apical sorting is independent of N-glycans. Both proteins were observed to colocalize in part with apical recycling endosome (ARE) markers. Cargo that lacks an apical targeting signal and is secreted in a nonpolarized manner did not localize to the ARE. Expression of a dominant-negative mutant of myosin Vb, which disrupts ARE export of glycan-dependent membrane proteins, selectively inhibited apical release of gGH but not Ensol. Fluorescence recovery after photobleaching (FRAP) measurements revealed that gGH in the ARE was less mobile than Ensol, consistent with tethering to a sorting receptor. However, knockdown of galectin-3 or galectin-4, lectins implicated in apical sorting, had no effect on the rate or polarity of gGH secretion. Together, our results suggest that apically secreted cargoes selectively access the ARE and are exported via differentially regulated pathways. 相似文献
7.
Chao DS Hay JC Winnick S Prekeris R Klumperman J Scheller RH 《The Journal of cell biology》1999,144(5):869-881
The ER/Golgi soluble NSF attachment protein receptor (SNARE) membrin, rsec22b, and rbet1 are enriched in approximately 1-micrometer cytoplasmic structures that lie very close to the ER. These appear to be ER exit sites since secretory cargo concentrates in and exits from these structures. rsec22b and rbet1 fused to fluorescent proteins are enriched at approximately 1-micrometer ER exit sites that remained more or less stationary, but periodically emitted streaks of fluorescence that traveled generally in the direction of the Golgi complex. These exit sites were reused and subsequent tubules or streams of vesicles followed similar trajectories. Fluorescent membrin- enriched approximately 1-micrometer peripheral structures were more mobile and appeared to translocate through the cytoplasm back and forth, between the periphery and the Golgi area. These mobile structures could serve to collect secretory cargo by fusing with ER-derived vesicles and ferrying the cargo to the Golgi. The post-Golgi SNAREs, syntaxin 6 and syntaxin 13, when fused to fluorescent proteins each displayed characteristic patterns of movement. However, syntaxin 13 was the only SNARE whose life cycle appeared to involve interactions with the plasma membrane. These studies reveal the in vivo spatiotemporal dynamics of SNARE proteins and provide new insight into their roles in membrane trafficking. 相似文献
8.
Vesicle flow within the cell is responsible for the dynamic maintenance of and communication between intracellular compartments. In addition, vesicular transport is crucial for communication between the cell and its surrounding environment. The ability of a vesicle to recognise and fuse with an appropriate compartment or vesicle is determined by its protein and lipid composition as well as by proteins in the cytosol. SNARE proteins present on both vesicle as well as target organelle membranes provide one component necessary for the process of membrane fusion. While in mammalian cells the main focus of interest about SNARE function has centred on those involved in exocytosis, recent data on SNAREs involved in intracellular membrane-trafficking steps have provided a deeper insight into the properties of these proteins. We take, as an example, the promiscuous SNARE syntaxin 6, a SNARE involved in multiple membrane fusion events. The properties of syntaxin 6 reveal similarities but also differences in the behaviour of intracellular SNAREs and the highly specialised exocytotic SNARE molecules. 相似文献
9.
Cytokinesis, the final stage of the cell cycle, is an essential step toward the formation of two viable daughter cells. In recent years, membrane trafficking has been shown to be important for the completion of cytokinesis. Vesicles originating from both the endocytic and secretory pathways are known to be shuttled to the plasma membrane of the ingressing cleavage furrow, delivering membrane and proteins to this dynamic region. Advances in cell imaging have led to exciting new discoveries regarding vesicle movement in living cells. Recent work has revealed a significant role for membrane trafficking, as controlled by regulatory proteins, during cytokinesis in animal cells. The endocytic and secretory pathways as well as motor proteins are revealed to be essential in the delivery of vesicles to the cleavage furrow during cytokinesis. 相似文献
10.
A new yeast endosomal SNARE related to mammalian syntaxin 8 总被引:3,自引:0,他引:3
We report the identification of a yeast SNARE that has escaped notice because of an apparent error in the genome sequence and because it is functionally redundant. It is encoded by an extended version of ORF YAL014c, and since its SNARE motif is related to mammalian syntaxin 8 we term the gene SYN8 . Syn8p is in endosomes. Co-precipitation indicates a set of complexes containing Pep12p, Vti1p, either Syn8p or Tlg1p and either Snc1p or Ykt6p. Analysis of growth and trafficking defects demonstrates that in the absence of Tlg1p, Syn8p is required for Pep12p function. Conversely, when Tlg1p is present, Syn8p can be removed without loss of Pep12p function, or induction of any other obvious trafficking defect. Syn8p thus appears to be a functional homolog of mammalian syntaxin 8, but Tlg1p can, amongst other roles, provide an equivalent function . 相似文献
11.
Shultz T Nash-Livni N Shmuel M Altschuler Y 《Biochemical and biophysical research communications》2006,351(1):106-112
The small-GTPase family of ADP ribosylation factors (ARFs) recruit coat proteins to promote vesicle budding. ARFs are activated by an association with sec7-containing exchange factors which load them with GTP. In epithelial cells, the small GTPase ARF6 operates within the endocytic system and has been shown to associate with ARNO to promote apical endocytosis and early to late endosomal trafficking. EFA6 has been shown to stimulate tight-junction formation and maintenance. Here, we show that in polarized epithelial MDCK cells, EFA6 is localized to early endosomes, causes their dramatic enlargement, and promotes basolateral targeting of IgA, which is normally targeted to the apical PM. These results suggest that the physiological function of ARF6 within the endocytic system is regulated by the exchange factor it associates with. 相似文献
12.
Mammalian autophagosomes possess the Qa-SNARE STX17 (syntaxin 17) for fusion with lysosomes. However, STX17 is not absolutely required for fusion because STX17 knockout cells partially retain autophagosome-lysosome fusion activity. We recently identified YKT6, an R-SNARE, as another autophagosomal SNARE protein that acts independently of STX17 in mammals. Here, we discuss the features and functions of autophagosomal SNARE proteins by comparing STX17 and YKT6.
Abbreviations: SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; STX17, syntaxin 17. 相似文献
13.
Tomes CN Michaut M De Blas G Visconti P Matti U Mayorga LS 《Developmental biology》2002,243(2):326-338
Exocytosis of the acrosome (the acrosome reaction) is a terminal morphological alteration that sperm must undergo prior to penetration of the extracellular coat of the egg. Ca(2+) is an essential mediator of this regulated secretory event. Aided by a streptolysin-O permeabilization protocol developed in our laboratory, we have previously demonstrated requirements for Rab3A, NSF, and synaptotagmin VI in the human sperm acrosome reaction. Interestingly, Rab3A elicits an exocytotic response of comparable magnitude to that of Ca(2+). Here, we report a direct role for the SNARE complex in the acrosome reaction. First, the presence of SNARE proteins is demonstrated by Western blot. Second, the Ca(2+)-triggered acrosome reaction is inhibited by botulinum neurotoxins BoNT/A, -E, -C, and -F. Third, antibody inhibition studies show a requirement for SNAP-25, SNAP-23, syntaxins 1A, 1B, 4, and 6, and VAMP 2. Fourth, addition of bacterially expressed SNAP-25 and SNAP-23 abolishes exocytosis. Acrosome reaction elicited by Rab3-GTP is also inhibited by BoNT/A, -C, and -F. Taken together, these results demonstrate a requirement for members of all SNARE protein families in the Ca(2+)- and Rab3A-triggered acrosome reaction. Furthermore, they indicate that the onset of sperm exocytosis relies on the functional assembly of SNARE complexes. 相似文献
14.
The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Whereas a key role of cAMP-dependent phosphorylation in CFTR-channel gating has been firmly established, more recent studies have provided clear evidence for the existence of a second level of cAMP regulation, i.e. the exocytotic recruitment of CFFR to the plasma membrane and its endocytotic retrieval. Regulated trafficking of the CFTR Cl- channel has sofar been demonstrated only in a subset of CFTR-expressing cell types. However, with the introduction of more sensitive methods to measure CFTR cycling and submembrane localization, it might turn out to be a more general phenomenon that could contribute importantly to both the regulation of CFTR-mediated chloride transport itself and to the regulation of other transporters and CFTR-modulated cellular functions. This review aims to summarize the present state of knowledge regarding polarized and regulated CFTR trafficking and endosomal recycling in epithelial cells, to discuss present gaps in our understanding of these processes at the cellular and molecular level, and to consider its possible implications for cystic fibrosis. 相似文献
15.
16.
The directionality of matrix deposition in vivo is governed by the ability of a cell to direct vesicularflow to a specific target site. Osteoblastic cells direct newly synthesized bone matrix proteins toward the bone surface. In this study, we dissect the molecular mechanisms underlying the polarized trafficking of matrix protein in osteoblasts. We demonstrate using TEM, immunocytochemistry, and cDNA analysis, the ability of osteoblastic cells in culture to form tight junction-like structures and report the expression of the tight junction associated proteins occludin and claudins 1-3 in these cells. We identify intercellular contact sites and the leading edge of migratory osteoblasts as major target sites of vesicular trafficking in osteoblasts. Proteins required for this process, rsec6, NSF, VAMP1, and syntaxin 4, as well as the bone matrix protein, osteopontin, localize to these sites. We demonstrate that osteoblasts in vivo possess VAMP1 and, furthermore, report the expression of two VAMP1 splice variants in these cells. In addition, osteoblasts express the NSF attachment protein alpha-SNAP and the t-SNARE SNAP23. Thus, cell-to-cell contact sites and the leading edge of migratory osteoblasts contain a unique complement of proteins required for SNARE mediated membrane fusion. 相似文献
17.
Ten years ago, we knew much about the function of polarized epithelia from the work of physiologists, but, as cell biologists, our understanding of how these cells were constructed was poor. We knew proteins were sorted and targeted to different plasma membrane domains and that, in some cells, the Golgi was the site of sorting, but we did not know the mechanisms involved. Between 1991 and the present, significant advances were made in defining sorting motifs for apical and basal-lateral proteins, describing the sorting machinery in the trans-Golgi network (TGN) and plasma membrane, and in understanding how cells specify delivery of transport vesicles to different membrane domains. The challenge now is to extend this knowledge to defining molecular mechanisms in detail in vitro and comprehending the development of complex epithelial structures in vivo. 相似文献
18.
19.
小泡运输介导的先天免疫在植物防卫中起重要作用。采用定量PCR和生物信息学的方法,该研究揭示两种不同的小泡运输类型分别在花生黄曲霉抗性品种C20R和敏感品种TFR发育的种子中起主要作用。VAMP726和RMR是黄曲霉抗性品种C20R中主要的小泡运输组分,VSRs VTI1a,b是黄曲霉敏感品种TFR中主要的小泡运输组分。在果实发育过程中,这些小泡运输组分的转录动态在整体转录组水平分别与相应的花生黄曲霉抗性品种C20R和敏感品种TFR差异表达的一系列基因表达趋势一致。因此,我们认为两类不同组合的小泡运输分别在黄曲霉抗性品种C20R和敏感品种TFR果实发育中起着主要运输作用,与发育中转录组水平基因表达的差异一致。这种差异早在蛋白质合成结束和运输起始阶段就已经显示,导致果实代谢和发育方向的差异,造就黄曲霉抗性的不同。 相似文献
20.
Liang Zhang Jingwen Ma Huan Liu Qian Yi Yanan Wang Jingjing Xing Peipei Zhang Shengdong Ji Mingjun Li Jingyuan Li Jinbo Shen Jinxing Lin 《The Plant journal : for cell and molecular biology》2021,108(2):426-440
The plant hormone auxin controls many aspects of plant development. Membrane trafficking processes, such as secretion, endocytosis and recycling, regulate the polar localization of auxin transporters in order to establish an auxin concentration gradient. Here, we investigate the function of the Arabidopsis thaliana R-SNAREs VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 in the post-Golgi trafficking required for proper auxin distribution and seedling growth. We show that multiple growth phenotypes, such as cotyledon development, vein patterning and lateral root growth, were defective in the double homozygous vamp721 vamp722 mutant. Abnormal auxin distribution and root patterning were also observed in the mutant seedlings. Fluorescence imaging revealed that three auxin transporters, PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1), aberrantly accumulate within the cytoplasm of the double mutant, impairing the polar localization at the plasma membrane (PM). Analysis of intracellular trafficking demonstrated the involvement of VAMP721 and VAMP722 in the endocytosis of FM4-64 and the secretion and recycling of the PIN2 transporter protein to the PM, but not its trafficking to the vacuole. Furthermore, vamp721 vamp722 mutant roots display enlarged trans-Golgi network (TGN) structures, as indicated by the subcellular localization of a variety of marker proteins and the ultrastructure observed using transmission electron microscopy. Thus, our results suggest that the R-SNAREs VAMP721 and VAMP722 mediate the post-Golgi trafficking of auxin transporters to the PM from the TGN subdomains, substantially contributing to plant growth. 相似文献