共查询到20条相似文献,搜索用时 9 毫秒
1.
Maria V. Sergeeva Vadim V. Mozhaev Joseph O. Rich Yuri L. Khmelnitsky 《Biotechnology letters》2000,22(17):1419-1422
A novel biocatalytic reaction of transamidation of non-activated amides with amines is reported. Among 45 different lipolytic and proteolytic enzymes tested, only the lipase from Candida antarcticawas able to catalyze this reaction. The reaction proceeded with up to ca. 80% conversion in anhydrous methyl tert-butyl ether and worked with both N-substituted and unsubstituted amides. The biocatalytic transamidation is an equilibrium process and, therefore, higher conversions to the desired amide were achieved by using increased concentrations of the amine nucleophile. 相似文献
2.
Hua-song Peng Min-hua Zong Ju-fang Wang Yi-qun Xu 《Biocatalysis and Biotransformation》2004,22(3):183-187
Lipase could catalyze the ammonolysis of trimethylsilylmethyl acetate in organic solvents and Novozym 435 was the best biocatalyst for the reaction. The influences of some factors on the reaction were investigated. Cyclohexane, n-hexane and heptane were found to be suitable reaction media and ammonium carbamate was the best ammonium source. The optimal initial water activity, temperature and pH value were 0.55-0.75, 35°C and 6.5 respectively, under which a substrate conversion of 97.6% could be achieved after reaction for 140 h. 相似文献
3.
Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium 总被引:15,自引:0,他引:15
Lilin Li Wei Du Dehua Liu Li Wang Zebo Li 《Journal of Molecular Catalysis .B, Enzymatic》2006,43(1-4):58-62
tert-Butanol, as a novel reaction medium, has been adopted for lipase-catalyzed transesterification of rapeseed oil for biodiesel production, with which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated. Combined use of Lipozyme TL IM and Novozym 435 was proposed further to catalyze the methanolysis and the highest biodiesel yield of 95% could be achieved under the optimum conditions (tert-butanol/oil volume ratio 1:1; methanol/oil molar ratio 4:1; 3% Lipozyme TL IM and 1% Novozym 435 based on the oil weight; temperature 35 °C; 130 rpm, 12 h). There was no obvious loss in lipase activity even after being repeatedly used for 200 cycles with tert-butanol as the reaction medium. Furthermore, waste oil was also explored for biodiesel production and it has been found that lipase also showed good stability in this novel system. 相似文献
4.
Lipase could catalyze the ammonolysis of trimethylsilylmethyl acetate in organic solvents and Novozym 435 was the best biocatalyst for the reaction. The influences of some factors on the reaction were investigated. Cyclohexane, n-hexane and heptane were found to be suitable reaction media and ammonium carbamate was the best ammonium source. The optimal initial water activity, temperature and pH value were 0.55–0.75, 35°C and 6.5 respectively, under which a substrate conversion of 97.6% could be achieved after reaction for 140 h. 相似文献
5.
Lipase from Candida cylindracea was used to catalyze the enantioselective esterification in isooctane to resolve naproxen. The conversion was 33.5% over 11 days. The enantiomer excess of product (ee %) was about 100% at this conversion when octanol acted as the other substrate. 相似文献
6.
Biocatalysis of lipoxygenase in selected organic solvent media 总被引:3,自引:0,他引:3
Selim Kermasha Ndeye Dioum Barbara Bisakowski 《Journal of Molecular Catalysis .B, Enzymatic》2001,11(4-6):909-919
The biocatalysis of purified soybean lipoxygenase (LOX) (EC 1.13.11.12), using linoleic acid as a substrate model, was investigated in selected organic solvent media, including chloroform, dichloromethane, hexane, iso-octane, octane and toluene. The results indicated that there was a 2.6-fold increase in LOX activity in the monophasic iso-octane medium compared to that obtained in the aqueous medium. The results also showed that there was an increase of 2.2- and 1.8-fold in LOX activity in the monophasic reaction media of octane and hexane, respectively. However, an inhibitory effect on enzyme activity was observed when the monophasic reaction media of toluene, chloroform and dichloromethane were used. In addition, the results showed that the optimum concentration of octane and iso-octane in the biphasic medium containing the organic solvent and Tris–HCl buffer solution, was determined to be 3.5% and 4%, respectively, for LOX activity. Moreover, the biocatalysis of LOX in a ternary micellar system, containing either 3.5% octane or 4% iso-octane, Tris–HCl buffer solution and an emulsifier, resulted in an overall increase in enzyme activity. The Km and Vmax values, substrate specificity, optimum protein concentration, optimum reaction temperature as well as the enzymatically catalyzed end-products were investigated for LOX biocatalysis in both ternary micellar systems. 相似文献
7.
Rosalie Karam Salwa Karboune Richard St-Louis Selim Kermasha 《Process Biochemistry》2009,44(11):1193-1199
Lipase-catalyzed acidolysis reaction of fish liver oil with dihydroxyphenylacetic acid (DHPA) was investigated in terms of enzyme specificity as well as the effects of enzyme concentration, molar substrate ratio and organic solvent mixture on the bioconversion yield. The highest bioconversion yield of 83% was obtained when Novozym 435 was used as biocatalyst in a hexane:2-butanone mixture of 75:25 (v/v) at a fish liver oil to DHPA substrate molar ratio of 4:1; however, lower bioconversion yield (15%) was obtained when Lipozyme IM 20 was used. The bioconversion yield of phenolic monoacylglycerols (MAGs) increased from 11 to 70% when the ratio of the hexane/2-butanone reaction medium was changed from 85:15 to 75:25 (v/v), whereas that of phenolic diacylglycerols (DAGs) remained relatively unchanged (13–16%). The results also showed that the acidolysis reaction resulted in an increase of C20:5 ω-3 and C22:6 ω-3 proportions from 11.5 and 20.2% in the original fish liver oil to 22.6–27.1 and 22.8–23.1% in the phenolic lipids, respectively. The radical scavenging ability of phenolic lipids was determined to be about half-time lower than that of α-tocopherol. 相似文献
8.
The interaction of 3H-GABA (gamma-aminobutyric acid and 14C-glutamate with lipids in an aqueous organic partition system was studied. With this partition system 3H-GABA and 14C-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium we could not demonstrate any interaction between 3H-GABA and lipids. The apparent dissociation constants (Kd) for 3H-GABA-lipids or 14C-glutamate-lipids interactions in organic medium were in the millimolar range and maximal charge (Bmax) between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, beta-alanine and glycine displaced 3H-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 microM were required and in the partition system 3H-GABA and lipid phosphorus were both concentrated at the interface. Therefore lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate. 相似文献
9.
Summary The direct, lipase-catalyzed esterifications of glycerol-3-phosphate in an organic solvent system and in a solvent free system were carried out. In a solvent free system only, LPA synthesis could be achieved within the acceptable reaction time. Open reaction system was preferable to closed reaction system for LPA synthesis. Yield of LPA isolated by silica gel column chromatography was 32.3%. 相似文献
10.
The kinetics of the immobilized lipase B from Candida antarctica have been studied in organic solvents. This enzyme has been shown to be slightly affected by the water content of the organic media, and it does not seem to be subject to mass transfer limitations. On the other hand, some evidence indicates that the catalytic mechanism of reactions catalyzed by this lipase proceeds through the acyl-enzyme intermediate. Moreover, despite the fact that the immobilization support dramatically enhances the catalytic power of the enzyme, it does not interfere with the intrinsic solvent effect. Consequently, this enzyme preparation becomes optimum for studying the role played by the organic solvent in catalysis. To this end, we have measured the acylation and deacylation individual rate constants, and the binding equilibrium constant for the ester, in several organic environments. Data obtained show that the major effect of the organic solvent is on substrate binding, and that the catalytic steps are almost unaffected by the solvent, indicating the desolvation of the transition state. However, the strong decrease in binding for hydrophilic solvents such as THF and dioxane, compared to the rest of solvents, cannot be easily explained by means of thermodynamic arguments (desolvation of the ester substrate). For this reason, data have been considered as an indication of the existence of an unknown step in the catalytic pathway occurring prior to formation of the acyl-enzyme intermediate. 相似文献
11.
Chlorophyllase extract from Phaeodactylum tricornutum was immobilized by physical adsorption on DEAE-cellulose and silica gel as well as by covalent binding on Eupergit C, Eupergit C250L, Eupergit C/ethylenediamine (EDA) and Eupergit C250L/EDA. Although the highest immobilization yield (83-93%) and efficiency (51-53%) were obtained when chlorophyllase extract was immobilized on DEAE-cellulose and silica gel, there was no improvement in the thermal stability of chlorophyllase as compared to that of the free one. The immobilization of chlorophyllase extract on Eupergit C250L/EDA resulted by a high recovery of enzymatic activity, with an immobilization efficiency of 44%, and promoted a higher stabilization of chlorophyllase (four times) in the aqueous/miscible organic solvent medium. On the other hand, the inhibitory effect of refined bleached deodorized (RBD) canola oil was reduced by immobilization of chlorophyllase extract onto silica gel as compared to those obtained with other enzyme preparations. However, the re-cycled chlorophyllase extract immobilized on Eupergit C250L/EDA retained more than 75% of its initial enzyme activity after 6 cycles, whereas that immobilized on silica gel was completely inactivated. The highest catalytic efficiency, for both free and immobilized chlorophyllase on Eupergit C250L/EDA, was obtained in the ternary micellar system as compared to the aqueous/miscible organic solvent and biphasic media. 相似文献
12.
Md. Mahabubur Rahman Talukder Sze Min Puah Jin Chuan Wu Choi Jae Won Yvonne Chow 《Biocatalysis and Biotransformation》2006,24(4):257-262
Enzymatic production of methyl esters (biodiesel) by methanolysis of palm oil in presence and absence of organic solvent was investigated using Candida antarctica lipase immobilized on acrylic resin as a biocatalyst. Although, at least molar equivalent of methanol (methanol-palm oil ratio 3:1) is required for the complete conversion of palm oil to methyl esters, lipase catalyzed methanolysis of palm oil in absence of organic solvent was poisoned by adding more than 1/3 molar equivalent of methanol. The use of polar organic solvents prevented the lipase to be poisoned in methanolysis with a molar equivalent of methanol, and tetrahydrofuran (THF) was found to be the most effective. The presence of water in methanolysis of palm oil both in presence and absence of THF inhibited the reaction rate but this inhibition was considerably low in THF containing system. The palm oil-lipase (w/w) ratio significantly influenced the activity of lipase and the optimal ratio in presence and absence of THF was 100 and 50, respectively. 相似文献
13.
Structured phenolic lipids (PLs) were obtained by lipase-catalyzed transesterification of flaxseed oil, in a solvent-free system (SFS), with selected phenolic acids, including hydroxylated and/or methoxylated derivatives of cinnamic, phenyl acetic and benzoic acids. A bioconversion yield of 65% was obtained for the transesterification of flaxseed oil with 3,4-dihydroxyphenyl acetic acid (DHPA). However, the effect of the chemical structure of phenolic acids on the transesterification of flaxseed oil in SFS was of less magnitude as compared to that in organic solvent system (OSS). Using DHPA, the APCI-MS analysis confirmed the synthesis of monolinolenyl, dilinolenyl, linoleyl linolenyl and oleyl linolenyl dihydroxyphenyl acetates as phenolic lipids. A significant increase in the enzymatic activity from 200 to 270 nmol of PLs/g solid enzyme/min was obtained upon the addition of the non-ionic surfactant Span 65. However, upon the addition of the anionic surfactant, sodium bis-2-ethylhexyl sulfosuccinate (AOT), and the cationic one, hexadecyltrimethylammonium bromide (CTAB), the enzymatic activity was decreased slightly from 200 to 192 and 190 nmol of PLs/g solid enzyme/min, respectively. The results also showed that the increase in DHPA concentration from 20 to 60 mM resulted in a significant increase in the volumetric productivity (P(V)) from 1.61 to 4.74 mg PLs per mL reaction mixture per day. 相似文献
14.
Biocatalysis of tyrosinase using catechin as substrate in selected organic solvent media 总被引:2,自引:0,他引:2
Selim Kermasha Haihong Bao Barbara Bisakowski 《Journal of Molecular Catalysis .B, Enzymatic》2001,11(4-6):929-938
The enzymatic activity of mushroom tyrosinase was investigated using catechin as substrate in selected organic solvent media. The results showed that optimal tyrosinase activity was obtained at pH 6.2, 6.6, 6.0 and 6.2 in the organic solvent media of heptane, toluene, dichloromethane, and dichloroethane, respectively, and at a temperature between 25°C and 27.5°C. In addition, the kinetic studies showed that the Km values were 5.38, 1.03, 2.52 and 4.03 mM, for the tyrosinase-catechin biocatalysis in the reaction media of heptane, toluene, dichloromethane, and dichloroethane, respectively, while the corresponding Vmax values were 1.22×10−3, 0.33×10−3, 1.47×10−3 and 1.20×10−3 δA per μg protein per second, respectively. The use of acetone as co-solvent for the tyrosinase-catechin biocatalysis showed that acetone concentrations ranging from 5% to 30% (v/v) in the heptane reaction medium produced a decrease of 4.3% to 96.7% in tyrosinase activity. The results also indicated that the presence of 12.5% acetone in the reaction medium of dichloromethane, and 22.0% in those of toluene and dichloroethane produced a maximal increase of 42.6%, 92.1% and 71.8%, respectively, in tyrosinase activity. However, the overall findings indicated that additional increases in acetone concentration resulted in an inhibition of tyrosinase activity. 相似文献
15.
《Journal of Molecular Catalysis .B, Enzymatic》2009,59(1-4):65-71
A facile enzymatic synthesis approach to prepare novel feruloylated lipids through the lipase-catalyzed transesterification reaction of ethyl ferulate (EF) with tributyrin (TB) in toluene was investigated. The nuclear magnetic resonance (NMR) and electrospray ionization-mass spectroscopy (ESI-MS) analysis confirmed the formation of two major products, 1(3)-feruloyl-monobutyryl-glycerol (FMB) and 1(3)-feruloyl-dibutyryl-glycerol (FDB). The influences of different enzyme source, organic solvent, molar ratio, reaction temperature, agitation speed and water activity on the total conversion of reaction, distribution of FMB and FDB and selectivity of these two novel derivatives of FA were analyzed systematically. Under the optimal conditions, the highest conversion of feruloylated lipids achieved was 73.6%, which was composed of FMB 58.3% and FDB 13.1%, respectively. The enzyme can be reused for 14 runs without evident loss in activity and stability. 相似文献
16.
对有机相中酶法催化合成乙酸肉桂酯的转酯化反应进行研究。结果发现:Candida anatarctic脂肪酶(Novozyme435)、根霉脂肪酶(Rhizopus niveus lipase)和荧光假单胞菌脂肪酶(Pseudomonas fluore lipase)均有较好的催化活性。同时考察各反应参数(温度、反应溶剂、体系水活度、酰化剂类型、肉桂醇与酰化剂摩尔比、肉桂醇浓度等)对脂肪酶Novozyme435合成乙酸肉桂酯反应的影响,确定了反应体系最优工艺条件:在10 mL甲基叔丁基醚中,肉桂醇200 mmol/L,n(肉桂醇)∶n(乙酸乙烯酯)=1∶1.5,初始水活度αw=0.84,温度35℃,酶加量0.02 g,反应3 h后肉桂醇转化率可达到99%,产物经质谱(MS)鉴定。固定化酶经过10个批次反应,反应转化率都保持在90%以上。 相似文献
17.
Summary The direct, lipase-catalyzed esterification of hydrophilic diols in organic solvents was achieved by first adsorbing the hydrophilic, solvent immiscible substrate onto a solid support with high internal surface, namely silica gel and reacting the solid mixture with fatty acid vinyl esters in an appropriate organic solvent and in presence of an immobilized lipase fromMucor miehei (Lipozyme). Quantitative conversions of the acyl donors and very high reaction rates were observed in these transformations. Furthermore, mono- or diesters of these diols could be selectively produced by this method. 相似文献
18.
A solvent engineering strategy was applied to the lipase-catalyzed synthesis of xylitol-oleic acid monoesters. The different esterification degrees for this polyhydroxylated molecule were examined in different organic solvent mixtures. In this context, conditions for high selectivity towards monooleoyl xylitol synthesis were enhanced from 6 mol% in pure n-hexane to 73 mol% in 2-methyl-2-propanol/dimethylsulfoxide (DMSO) 80:20 (v/v). On the contrary, the highest production of di- and trioleoyl xylitol, corresponding to 94 mol%, was achieved in n-hexane. Changes in polarity of the reaction medium and in the molecular interactions between solvents and reactants were correlated with the activity coefficients of products. Based on experimental results and calculated thermodynamic activities, the effect of different binary mixtures of solvents on the selective production of xylitol esters is reported. From this analysis, it is concluded that in the more polar conditions (100% dimethylsulfoxide (DMSO)), the synthesis of xylitol monoesters is favored. However, these conditions are unfavorable in terms of enzyme stability. As an alternative, binary mixtures of solvents were proposed. Each mixture of solvents was characterized in terms of the quantitative polarity parameter E(T)(30) and related with the activity coefficients of xylitol esters. To our knowledge, the characterization of solvent mixtures in terms of this polarity parameter and its relationship with the selectivity of the process has not been previously reported. 相似文献
19.
Luis J. Lpez Giraldo Mickaël Laguerre Jrme Lecomte Maria-Cruz Figueroa-Espinoza Nathalie Barouh Bruno Bara Pierre Villeneuve 《Enzyme and microbial technology》2007,41(6-7):721-726
Chlorogenic acid (5-caffeoylquinic acid or 5-CQA) is an hydrophilic phenolic compound with antioxidant properties. Because of its high polarity, its antioxidant properties may be altered when formulated in oil based food or cosmetic preparations. Therefore, there is an interest in trying to enhance its hydrophobicity by grafting of an aliphatic chain. Such lipophilization reactions can be generally achieved through enzymatic catalysis. Our study consisted in synthesizing fatty cholorogenate esters in a two steps reaction. Firstly, 5-CQA was chemically esterified by methanol using an Amberlite IR120 H resin to obtain methyl chlorogenate that is more soluble in the fatty alcohols than 5-CQA. Secondly, this chlorogenate intermediate was transesterified with fatty alcohols of various chain lengths (C4, C8, C12, or C16) in the presence of Candida antarctica B lipase. Under optimal reaction conditions (aw = 0.05; 5% (w/w) of biocatalyst), the transesterification rates were until two-fold higher than in the direct lipase-catalyzed esterification of chlorogenic acid by the same alcohols. The two-step reaction overall yield was between 61 and 93% depending on the alcohol chain length, whereas it was 40–60% for the direct esterification with the same alcohols. 相似文献
20.
Screening for lipases capable of catalyzing acetylation of cellulosic substrates was conducted in aqueous buffer solution using water-soluble carboxymethyl cellulose (CMC) as substrate. Lipase A12 from Aspergillus niger (A. niger) showed the most promising acetylation activity among 11 tested commercial microbial lipases and was further applied to catalyzing acetylation of solid cellulose in aqueous solution. This reaction was shown to be feasible with an acetylation extent of 0.16 wt % achieved compared with no detectable acetylation in the absence of enzyme. Pretreatments on cellulose substrate by ultrasonic irradiation and surfactant solution only slightly improved the acetylation extent by 44 and 27%, respectively. Alternatively, this lipase-catalyzed acetylation was remarkably improved with solubilized cellulose as substrate in the dimethyl sulfoxide/paraformaldehyde solvent system, with an acetylation extent (7.87 wt %) nearly 50 times higher than that achieved in aqueous solution. This improvement was attributed to (1) the absence of bulk water and the increase in substrate solubility by the transition of reaction media from aqueous solution to organic solvents and (2) the ability of lipase A12 to remain catalytically active in highly polar DMSO. This discovery that the A. niger lipase was capable of surviving its contact with polar solvents was further confirmed by its considerably preserved catalytic activity on CMC acetylation in aqueous media after enzyme pretreatments with organic solvents of various polarities and in mixture media with the aqueous phase partially replaced by organic solvents. 相似文献