首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel series of 4-azetidinyl-1-aryl-cyclohexanes containing indazole or benzoisoxazole moiety have been identified as potent CCR2 antagonists with high selectivity versus hERG.  相似文献   

2.
As a result of further SAR studies on a piperidinyl piperidine scaffold, we report the discovery of compound 44, a potent, orally bioavailable CCR2 antagonist. While having some in vitro hERG activity, this molecule was clean in an in vivo model of QT prolongation. In addition, it showed excellent efficacy when dosed orally in a transgenic murine model of acute inflammation.  相似文献   

3.
A series of CCR1 antagonists based upon spirocyclic compounds 1b and 2b were synthesised in which substituted aniline moiety was replaced with substituted benzamides. In vitro data revealed that CCR1 potency could be retained in such compounds.  相似文献   

4.
We describe the systematic optimization, focused on the improvement of CV-TI, of a series of CCR2 antagonists. This work resulted in the identification of 10 (((1S,3R)-1-isopropyl-3-((3S,4S)-3-methoxy-tetrahydro-2H-pyran-4-ylamino)cyclopentyl)(4-(5-(trifluoromethyl)pyridazin-3-yl)piperazin-1-yl)methanone) which possessed a low projected human dose 35-45 mg BID and a CV-TI = 3800-fold.  相似文献   

5.
We describe novel alkylsulfones as potent CCR2 antagonists with reduced hERG channel activity and improved pharmacokinetics over our previously described antagonists. Several of these new alkylsulfones have a profile that includes functional antagonism of CCR2, in vitro microsomal stability, and oral bioavailability. With this improved profile, we demonstrate that two of these antagonists, 2 and 12, are orally efficacious in an animal model of inflammatory recruitment.  相似文献   

6.
A novel series of cyclic urea-based CCR5 antagonists was designed aiming to resolve instability issue in the fasted simulated intestinal fluid (FSIF) associated with the acyclic urea moiety in 1. This class of CCR5 compounds demonstrated high antiviral activities against HIV-1 infection in both HOS and PBL assays. Further evaluation of these compounds indicated that 16-R not only substantially enhanced its stability, but also exhibited excellent pharmacokinetics properties.  相似文献   

7.
SAR study of 5-aminooctahydrocyclopentapyrrole-3a-carboxamide scaffold led to identification of several CCR2 antagonists with potent activity in both binding and functional assays. Their cardiovascular safety and pharmacokinetic properties were also evaluated.  相似文献   

8.
A novel N-(2-oxo-2-(piperidin-4-ylamino)ethyl)-3-(trifluoromethyl)benzamide series of human CCR2 chemokine receptor antagonists was identified. With a pharmacophore model based on known CCR2 antagonists a new core scaffold was designed, analogues of it synthesized and structure–affinity relationship studies derived yielding a new high affinity CCR2 antagonist N-(2-((1-(4-(3-methoxyphenyl)cyclohexyl)piperidin-4-yl)amino)-2-oxoethyl)-3-(trifluoromethyl)benzamide.  相似文献   

9.
A series of fused bicyclic and urea derivatives of spirocyclic compounds were designed, synthesised and evaluated in vitro as potent CCR1 antagonists. In particular, 4 (7 nM), 44 (1.3 nM), 48 (0.89 nM) and 50 (0.63 nM) were the most potent hCCR1 antagonists in this series of compounds. Moreover, some of these substances demonstrated good rodent cross-over, especially 46 which exhibited very high rat CCR1 binding affinity with an IC50 value of 16 nM.  相似文献   

10.
A knowledge-based library of 2,3-dichlorophenylsulfonyl derivatives of commercially available aryl amines was synthesised and screened as human CCR4 antagonists, in order to identify a suitable hit for the start of a lead-optimisation programme. Hits were required to be more potent than an existing indazole series, have better physicochemical properties (c log P <3.5, chrom log D7.4 <5.3 and CLND solubility >116 μg/mL), and be stable to acid and light. The benzimidazol-2-one core was identified as a hit suitable for further investigation. Substitution at N1 with small alkyl groups was tolerated; however, these analogues were inactive in the whole blood assay (pA2 <5). Azabenzimidazolone analogues were all found to be active, with compound 38 exhibiting whole blood activity of 6.1, low molecular weight (389) and chrom log D7.4 (2.4), high LE (0.43), and solubility (152 μg/mL). In addition, 38 had human serum albumin binding of around 93% and met all the criteria for progression to lead optimisation.  相似文献   

11.
A major physiological role of hERG1 (human Ether-á-go-go-Related Gene 1) potassium channels is to repolarize cardiac action potentials. Two isoforms, hERG1a and hERG1b, associate to form the potassium current IKr in cardiomyocytes. Inherited mutations in hERG1a or hERG1b cause prolonged cardiac repolarization, long QT syndrome, and sudden death arrhythmia. hERG1a subunits assemble with and enhance the number of hERG1b subunits at the plasma membrane, but the mechanism for the increase in hERG1b by hERG1a is not well understood. Here, we report that the hERG1a N-terminal region expressed in trans with hERG1b markedly increased hERG1b currents and increased biotin-labeled hERG1b protein at the membrane surface. hERG1b channels with a deletion of the N-terminal 1b domain did not have a measurable increase in current or biotinylated protein when coexpressed with hERG1a N-terminal regions, indicating that the 1b domain was required for the increase in hERG1b. Using a biochemical pull-down interaction assay and a FRET hybridization experiment, we detected a direct interaction between the hERG1a N-terminal region and the hERG1b N-terminal region. Using engineered deletions and alanine mutagenesis, we identified a short span of amino acids at positions 216 to 220 within the hERG1a “N-linker” region that were necessary for the upregulation of hERG1b. We propose that direct structural interactions between the hERG1a N-linker region and the hERG1b 1b domain increase hERG1b at the plasma membrane. Mechanisms regulating hERG1a and hERG1b are likely critical for cardiac function, may be disrupted by long QT syndrome mutants, and serve as potential targets for therapeutics.  相似文献   

12.
A HTS screen for CCR1 antagonists afforded a novel sub-micromolar hit 5 containing a pyrazole core. In this report the design, optimization, and SAR of novel CCR1 antagonists based on a pyrazole core motif is presented. Optimization led to the advanced candidate compounds (S)-16q and (S)-16r with 250-fold improved CCR1 potency, excellent off-target selectivity and attractive drug-like properties.  相似文献   

13.
This report describes the design and synthesis of a series of CCR2 antagonists incorporating novel non-aryl/heteroaryl RHS (right hand side) motifs. Previous SAR in the area has suggested an aryl/heteroaryl substituent as a necessary structural feature for binding to the CCR2 receptor. Herein we describe the SAR with regards to potency (binding to hCCR2), dofetilide activity and metabolic stability (in vitro HLM) for this series. The resulting outcome was the identification of compounds with excellent properties for the investigation of the role of CCR2 in disease.  相似文献   

14.
The discovery of a novel series of cyclopenta[b]furans as CCR2 inhibitors is discussed. This series has excellent CCR2 potency and PK characteristics, and good cardiovascular safety.  相似文献   

15.
Structural features of the substituted 4-piperidinyl urea analogs 1, responsible for the H3 antagonist activity, have been identified. Structure–activity relationship of the H3 receptor affinity, hERG ion channel inhibitory activity and their separation is described. Preliminary pharmacokinetic evaluation of the compounds of the series is addressed.  相似文献   

16.
The synthesis and evaluation of a series of 2,4-diaminopyridine-based neuropeptide Y Y1 (NPY Y1) receptor antagonists are described. Compound 1 was previously reported by our laboratory to be a potent and selective Y1 antagonist; however, 1 was also found to have potent hERG inhibitory activity. The main focus of this communication is structure–activity relationship development aimed at eliminating the hERG activity of 1. This resulted in the identification of compound 3d as a potent and selective NPY Y1 antagonist with reduced hERG liability.  相似文献   

17.
Extracellular acidosis occurs in the heart during myocardial ischemia and can lead to dangerous arrhythmias. Potassium channels encoded by hERG (human ether-à-go-go-related gene) mediate the cardiac rapid delayed rectifier K+ current (IKr), and impaired hERG function can exacerbate arrhythmia risk. Nearly all electrophysiological investigations of hERG have centred on the hERG1a isoform, although native IKr channels may be comprised of hERG1a and hERG1b, which has a unique shorter N-terminus. This study has characterised for the first time the effects of extracellular acidosis (an extracellular pH decrease from 7.4 to 6.3) on hERG channels incorporating the hERG1b isoform. Acidosis inhibited hERG1b current amplitude to a significantly greater extent than that of hERG1a, with intermediate effects on coexpressed hERG1a/1b. IhERG tail deactivation was accelerated by acidosis for both isoforms. hERG1a/1b activation was positively voltage-shifted by acidosis, and the fully-activated current–voltage relation was reduced in amplitude and right-shifted (by ∼10 mV). Peak IhERG1a/1b during both ventricular and atrial action potentials was both suppressed and positively voltage-shifted by acidosis. Differential expression of hERG isoforms may contribute to regional differences in IKr in the heart. Therefore inhibitory effects of acidosis on IKr could also differ regionally, depending on the relative expression levels of hERG1a and 1b, thereby increasing dispersion of repolarization and arrhythmia risk.  相似文献   

18.
Optimisation of a series of biaryl sulphonamides resulted in the identification of compound 7 which demonstrated dose-dependent and strain-specific inhibition of monocyte recruitment in a thioglycollate-induced peritonitis model of inflammation.  相似文献   

19.
A series of sulfonamide CCR2 antagonists was identified by high-throughput screening. Management of molecular weight and physical properties, in particular moderation of lipophilicity and study of pKa, yielded highly potent CCR2 antagonists exhibiting good pharmacokinetic properties and improved potency in the presence of human plasma.  相似文献   

20.
Multiple CC chemokines bind to CCR1, which plays important roles in immune and inflammatory responses. To search for proteins involved in the CCR1 signaling pathway, we screened a yeast two-hybrid library using the cytoplasmic tail of CCR1 as the bait. One of the positive clones contained an open reading frame of 456bp, of which the nucleotide sequence was identical to that of proteolipid protein 2 (PLP2), also known as protein A4. Mammalian two-hybrid and coimmunoprecipitation analyses demonstrated the association of PLP2/A4 with CCR1. Indirect immunofluorescence analysis revealed that PLP2/A4 was predominantly located in plasma membrane and colocalized with CCR1 in transfected human HEK293 cells. In addition, focal staining of CCR1 appeared on the periphery of the membrane upon short exposure to Leukotactin-1(Lkn-1)/CCL15, a CCR1 agonist, and was costained with PLP2/A4 on the focal regions. PLP2/A4 mRNAs were detected in various cells such as U-937, HL-60, HEK293, and HOS cells. Overexpression of PLP2/A4 stimulated a twofold increase in the agonist-induced migration of HOS/CCR1 cells, implicating a functional role for PLP2/A4 in the chemotactic processes via CCR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号