首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human gamma-herpesviruses, EBV and Kaposi's sarcoma-associated herpesvirus, infect >90% of the population worldwide, and latent infection is associated with numerous malignancies. Rational vaccination and therapeutic strategies require an understanding of virus-host interactions during the initial asymptomatic infection. Primary EBV infection is associated with virus replication at epithelial sites and entry into the circulating B lymphocyte pool. The virus exploits the life cycle of the B cell and latency is maintained long term in resting memory B cells. In this study, using a murine gamma-herpesvirus model, we demonstrate an early dominance of latent virus at the site of infection, with lung B cells harboring virus almost immediately after infection. These data reinforce the central role of the B cell not only in the later phase of infection, but early in the initial infection. Early inhibition of lytic replication does not impact the progression of the latent infection, and latency is established in lymphoid tissues following infection with a replication-deficient mutant virus. These data demonstrate that lytic viral replication is not a requirement for gamma-herpesvirus latency in vivo and suggest that viral latency can be disseminated by cellular proliferation. These observations emphasize that prophylactic vaccination strategies must target latent gamma-herpesvirus at the site of infection.  相似文献   

2.
Biology and disease associations of Epstein-Barr virus   总被引:10,自引:0,他引:10  
Epstein-Barr virus (EBV) is a human herpesvirus which infects almost all of the world's population subclinically during childhood and thereafter remains in the body for life. The virus colonizes antibody-producing (B) cells, which, as relatively long-lived resting cells, are an ideal site for long-term residence. Here EBV evades recognition and destruction by cytotoxic T cells. EBV is passed to naive hosts in saliva, but how the virus gains access to this route of transmission is not entirely clear. EBV carries a set of latent genes that, when expressed in resting B cells, induce cell proliferation and thereby increase the chances of successful virus colonization of the B-cell system during primary infection and the establishment of persistence. However, if this cell proliferation is not controlled, or if it is accompanied by additional genetic events within the infected cell, it can lead to malignancy. Thus EBV acts as a step in the evolution of an ever-increasing list of malignancies which are broadly of lymphoid or epithelial cell origin. In some of these, such as B-lymphoproliferative disease in the immunocompromised host, the role of the virus is central and well defined; in others, such as Burkitt's lymphoma, essential cofactors have been identified which act in concert with EBV in the evolution of the malignant clone. However, in several diseases in which the presence of EBV has more recently been discovered, the role of the virus is unclear. This review describes recent views on the EBV life cycle and its interlinks with normal B-cell biology, and discusses how this interrelationship may be upset and result in EBV-associated disease.  相似文献   

3.
Gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68; also known as gammaherpesvirus 68 [γHV68] or murine herpesvirus 4 [MuHV-4]), establish lifelong latency in the resting memory B cell compartment. However, little is known about how this reservoir of infected mature B cells is maintained for the life of the host. In the context of a normal immune system, the mature B cell pool is naturally maintained by the renewable populations of developing B cells that arise from hematopoiesis. Thus, recurrent infection of these developing B cell populations could allow the virus continual access to the B cell lineage and, subsequent to differentiation, the memory B cell compartment. To begin to address this hypothesis, we examined whether MHV68 establishes latency in developing B cells during a normal course of infection. In work described here, we demonstrate the presence of viral genome in bone marrow pro-pre-B cells and immature B cells during early latency and immature B cells during long-term latency. Further, we show that transitional B cells in the spleen are latently infected and express the latency-associated nuclear antigen (LANA) throughout chronic infection. Because developing B cells normally exhibit a short life span and a high rate of turnover, these findings suggest a model in which gammaherpesviruses may gain access to the mature B cell compartment by recurrent seeding of developing B cells.  相似文献   

4.
In vitro, Epstein-Barr virus (EBV) will infect any resting B cell, driving it out of the resting state to become an activated proliferating lymphoblast. Paradoxically, EBV persists in vivo in a quiescent state in resting memory B cells that circulate in the peripheral blood. How does the virus get there, and with such specificity for the memory compartment? An explanation comes from the idea that two genes encoded by the virus--LMP1 and LMP2A--allow EBV to exploit the normal pathways of B-cell differentiation so that the EBV-infected B blast can become a resting memory cell.  相似文献   

5.
DNA viruses such as herpesviruses are known to encode homologs of cellular antiapoptotic viral Bcl-2 proteins (vBcl-2s), which protect the virus from apoptosis in its host cell during virus synthesis. Epstein-Barr virus (EBV), a human tumor virus and a prominent member of γ-herpesviruses, infects primary resting B lymphocytes to establish a latent infection and yield proliferating, growth-transformed B cells in vitro. In these cells, 11 viral genes that contribute to cellular transformation are consistently expressed. EBV also encodes two vBcl-2 genes whose roles are unclear. Here we show that the genetic inactivation of both vBcl-2 genes disabled EBV's ability to transform primary resting B lymphocytes. Primary B cells infected with a vBcl-2-negative virus did not enter the cell cycle and died of immediate apoptosis. Apoptosis was abrogated in infected cells in which vBcl-2 genes were maximally expressed within the first 24 h postinfection. During latent infection, however, the expression of vBcl-2 genes became undetectable. Thus, both vBcl-2 homologs are essential for initial cellular transformation but become dispensable once a latent infection is established. Because long-lived, latently infected memory B cells and EBV-associated B-cell lymphomas are derived from EBV-infected proapoptotic germinal center B cells, we conclude that vBcl-2 genes are essential for the initial evasion of apoptosis in cells in vivo in which the virus establishes a latent infection or causes cellular transformation or both.  相似文献   

6.
Epstein-Barr virus (EBV) is a human tumor virus and a paradigm of herpesviral latency. Mature naïve or memory B cells are EBV's preferred targets in vitro and in vivo. Upon infection of any B cell with EBV, the virus induces cellular proliferation to yield lymphoblastoid cell lines (LCLs) in vitro and establishes a latent infection in them. In these cells a ‘classical’ subset of latent viral genes is expressed that orchestrate and regulate cellular activation and proliferation, prevent apoptosis, and maintain viral latency. Surprisingly, little is known about the early events in primary human B cells infected with EBV. Recent analyses have revealed the initial but transient expression of additional viral genes that do not belong to the ‘classical’ latent subset. Some of these viral genes have been known to initiate the lytic, productive phase of EBV but virus synthesis does not take place early after infection. The early but transient expression of certain viral lytic genes is essential for or contributes to the initial survival and cell cycle entry of resting B cells to foster their proliferation and sustain a latent infection. This review summarizes the recent findings and discusses the presumed function(s) of viral genes expressed shortly but transiently after infection of B-lymphocytes with EBV.  相似文献   

7.
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that persists in the body for life after primary infection. The primary site of EBV persistence is the memory B lymphocyte, but whether the virus initially infects na?ve or memory B cells is still disputed. We have analyzed EBV infection in nine cases of X-linked hyper-immunoglobulin M (hyper-IgM) syndrome who, due to a mutation in CD40 ligand gene, do not have a classical, class-switched memory B-cell population (IgD(-) CD27(+)). We found evidence of EBV infection in 67% of cases, which is similar to the infection rate found in the general United Kingdom population (60 to 70% for the relevant age range). We detected EBV DNA in peripheral blood B cells and showed in one case that the infection was restricted to the small population of nonclassical, germinal center-independent memory B cells (IgD(+) CD27(+)). Detection of EBV small RNAs, latent membrane protein 2, and EBV nuclear antigen 3C expression in peripheral blood suggests full latent viral gene expression in this population. Analysis of EBV DNA in serial samples showed variability over time, suggesting cycles of infection and loss. Our results demonstrate that short-term EBV persistence can occur in the absence of a germinal center reaction and a classical memory B-cell population.  相似文献   

8.
9.
The oncogenic Epstein-Barr virus (EBV) infects the majority of the human population without doing harm and establishes a latent infection in the memory B-cell compartment. To accomplish this, EBV hijacks B-cell differentiation pathways and uses its own viral genes to interfere with B-cell signalling to achieve life-long persistence. EBV latent membrane protein 2A (LMP2A) provides a surrogate B-cell receptor signal essential for cell survival and is believed to have a crucial role in the maintenance of latency by blocking B-cell activation which would otherwise lead to lytic EBV infection. These two functions demand tight control of LMP2A activity and expression levels. Based on recent insights in the function of LMP2B, an isoform of LMP2A, we propose a model for how LMP2B modulates the activity of LMP2A contributing to maintenance of EBV latency.  相似文献   

10.
11.
Epstein-Barr virus (EBV) infects both B lymphocytes and squamous epithelial cells in vitro, but the cell type(s) required to establish primary and persistent infection in vivo has not been definitively elucidated. The aim of this study was to investigate a group of individuals who lack mature B lymphocytes due to the rare heritable disorder X-linked agammaglobulinemia in order to determine the role of the B cell in the infection process. The results show that none of these individuals harbored EBV in their blood or throat washings. Furthermore, no EBV-specific memory cytotoxic T lymphocytes were found, suggesting that they had not undergone infection in the past. In contrast, 50% of individuals were found to carry human herpesvirus 6, showing that they are infectible by another lymphotropic herpesvirus. These results add weight to the theory that B lymphocytes, and not oropharyngeal epithelial cells, may be required for primary infection with EBV.  相似文献   

12.
13.
14.
The Epstein-Barr virus (EBV) is a gamma-herpes virus which establishes latent, life-long infection in more than 95% of the human adult population. Despite its growth transforming capacity, most carriers control EBV associated malignacies efficiently and remain free of EBV+ tumors. Though EBV is controlled by a potent immune response, this virus uses latency to persist in vivo. This review summarizes work which has been done to characterize T cell responses to EBV. The CD8 T cell responses are rather well characterized and have been shown by several groups to be highly focused towards early lytic antigens. Much less is known about CD4 T cell epitopes, due to the small size of the CD4 compartment. However, recent data indicate a control of lytic and latent cycles of EBV by specific CD4+ T cells. A clear understanding of the T cell response to EBV is important with a view to developing immunotherapies for the virus and its related malignancies.  相似文献   

15.
16.
Human herpesviruses are characterized by distinct states of infection. Typically in permissive herpesvirus infection, abundant virus production results in cell lysis. In latent transforming Epstein-Barr virus (EBV) infection, viral proteins that induce cell growth are expressed. The immunodeficiency-associated hairy leukoplakia (HLP) lesion is the only pathologic manifestation of permissive EBV infection; however, within HLP, viral proteins characteristic of latent infection have also been detected. In this study, we further analyzed expression of EBV latent genes and investigated their contribution to the unique histologic phenotype of HLP. Coexpression of lytic and transforming viral proteins was detected simultaneously within individual HLP keratinocytes. LMP1 has now been shown to be uniformly expressed in the affected tissue, and it is associated and colocalizes with tumor necrosis factor receptor-associated factor (TRAF) signaling molecules. Effects induced by activated TRAF signaling that were detected in HLP included activation of NF-kappaB and c-Jun terminal kinase 1 (JNK1) and upregulated expression of epidermal growth factor receptor (EGFR), CD40, A20, and TRAFs. This study identifies a novel state of EBV infection with concurrent expression of replicative and transforming proteins. It is probable that both replicative and latent proteins contribute to HLP development and induce many of the histologic features of HLP, such as acanthosis and hyperproliferation. In contrast to other permissive herpesvirus infections, expression of EBV transforming proteins within the permissively infected HLP tissue enables epithelial cell survival and may enhance viral replication.  相似文献   

17.
Epstein-Barr virus (EBV) infection of primary human B cells drives their indefinite proliferation into lymphoblastoid cell lines (LCLs). B cell immortalization depends on expression of viral latency genes, as well as the regulation of host genes. Given the important role of microRNAs (miRNAs) in regulating fundamental cellular processes, in this study, we assayed changes in host miRNA expression during primary B cell infection by EBV. We observed and validated dynamic changes in several miRNAs from early proliferation through immortalization; oncogenic miRNAs were induced, and tumor suppressor miRNAs were largely repressed. However, one miRNA described as a p53-targeted tumor suppressor, miR-34a, was strongly induced by EBV infection and expressed in many EBV and Kaposi's sarcoma-associated herpesvirus (KSHV)-infected lymphoma cell lines. EBV latent membrane protein 1 (LMP1) was sufficient to induce miR-34a requiring downstream NF-κB activation but independent of functional p53. Furthermore, overexpression of miR-34a was not toxic in several B lymphoma cell lines, and inhibition of miR-34a impaired the growth of EBV-transformed cells. This study identifies a progrowth role for a tumor-suppressive miRNA in oncogenic-virus-mediated transformation, highlighting the importance of studying miRNA function in different cellular contexts.  相似文献   

18.
Previous studies on Epstein-Barr virus (EBV)-positive B-cell lines have identified two distinct forms of virus latency. Lymphoblastoid cell lines generated by virus-induced transformation of normal B cells in vitro, express the full spectrum of six EBNAs and three latent membrane proteins (LMP1, LMP2A, and LMP2B); furthermore, these lines often contain a small fraction of cells spontaneously entering the lytic cycle. In contrast, Burkitt's lymphoma-derived cell lines retaining the tumor biopsy cell phenotype express only one of the latent proteins, the nuclear antigen EBNA1; such cells do not enter the lytic cycle spontaneously but may be induced to do so by treatment with such agents as tetradecanoyl phorbol acetate and anti-immunoglobulin. The present study set out to determine whether activation of full virus latent-gene expression was a necessary accompaniment to induction of the lytic cycle in Burkitt's lymphoma lines. Detailed analysis of Burkitt's lymphoma lines responding to anti-immunoglobulin treatment revealed three response pathways of EBV gene activation from EBNA1-positive latency. A first, rapid response pathway involves direct entry of cells into the lytic cycle without broadening of the pattern of latent gene expression; thereafter, the three "latent" LMPs are expressed as early lytic cycle antigens. A second, delayed response pathway in another cell subpopulation involves the activation of full latent gene expression and conversion to a lymphoblastoidlike cell phenotype. A third response pathway in yet another subpopulation involves the selective activation of LMPs, with no induction of the lytic cycle and with EBNA expression still restricted to EBNA1; this type of latent infection in B lymphocytes has hitherto not been described. Interestingly, the EBNA1+ LMP+ cells displayed some but not all of the phenotypic changes normally induced by LMP1 expression in a B-cell environment. These studies highlight the existence of four different types of EBV infection in B cells, including three distinct forms of latency, which we now term latency I, latency II, and latency III.  相似文献   

19.
20.
Epstein-Barr virus (EBV) is a strict human pathogen for which no small animal models exist. Plasmids that contain the EBV plasmid origin of replication, oriP, and express EBV nuclear antigen 1 (EBNA1) are stably maintained extrachromosomally in human cells, whereas these plasmids replicate poorly in rodent cells. However, the ability of oriP and EBNA1 to maintain the entire EBV episome in proliferating rodent cells has not been determined. Expression of the two human B-cell receptors for EBV on the surfaces of murine B cells allows efficient viral entry that leads to the establishment of latent EBV infection and long-term persistence of the viral genome. Latent gene expression in these cells resembles the latency II profile in that EBNA1 and LMP1 can be detected whereas EBNA2 and the EBNA3s are not expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号