首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
E Amaya  T J Musci  M W Kirschner 《Cell》1991,66(2):257-270
Peptide growth factors may play a role in patterning of the early embryo, particularly in the induction of mesoderm. We have explored the role of fibroblast growth factor (FGF) in early Xenopus development by expressing a dominant negative mutant form of the FGF receptor. Using a functional assay in frog oocytes, we found that a truncated form of the receptor effectively abolished wild-type receptor function. Explants from embryos expressing this dominant negative mutant failed to induce mesoderm in response to FGF. In whole embryos the mutant receptor caused specific defects in gastrulation and in posterior development, and overexpression of a wild-type receptor could rescue these developmental defects. These results demonstrate that the FGF signaling pathway plays an important role in early embryogenesis, particularly in the formation of the posterior and lateral mesoderm.  相似文献   

2.
3.
Single cell analysis of mesoderm formation in the Xenopus embryo   总被引:1,自引:0,他引:1  
We have examined the developmental specification of individual cells in the Xenopus blastula using a new in vitro culture system. Regional differences are apparent at the mid-blastula stage when animal hemisphere cells form only ectodermal cell types, while many clones from below the pigment boundary contain mesodermal cell types. A number of clones give rise to more than one differentiated cell type indicating that the initial steps of mesoderm induction are potentially reversible. Animal hemisphere cells can be induced to form mesoderm by fibroblast growth factor (FGF). Different cell types predominate at different FGF concentrations and the neighbours in this sequence are also the pairs of cell types most usually associated in mixed clones derived from the marginal zone. We propose that the specification of individual cells depends upon both the concentration of inducing factor and on stochastic intracellular events.  相似文献   

4.
D Kimelman  M Kirschner 《Cell》1987,51(5):869-877
The primary patterning event in early vertebrate development is the formation of the mesoderm and its subsequent induction of the neural tube. Classic experiments suggest that the vegetal region signals the animal hemisphere to diverge from the pathway of forming ectoderm to form mesoderm such as muscle. Here we show that bovine basic FGF has a limited capacity to induce muscle actin expression in animal hemisphere cells. This level of expression can be raised to levels normally induced in the embryo by another mammalian growth factor, TGF-beta, which by itself will not induce actin expression. We show that the Xenopus embryo contains an mRNA encoding a protein highly homologous to basic FGF. These results together with the identification of a maternal mRNA with strong homology to TGF-beta, suggest that molecules closely related to FGF and TGF-beta are the natural inducers of mesoderm in vertebrate development.  相似文献   

5.
The relative contributions of different FGF ligands and spliceforms to mesodermal and neural patterning in Xenopus have not been determined, and alternative splicing, though common, is a relatively unexplored area in development. We present evidence that FGF8 performs a dual role in X. laevis and X. tropicalis early development. There are two FGF8 spliceforms, FGF8a and FGF8b, which have very different activities. FGF8b is a potent mesoderm inducer, while FGF8a has little effect on the development of mesoderm. When mammalian FGF8 spliceforms are analyzed in X. laevis, the contrast in activity is conserved. Using a loss-of-function approach, we demonstrate that FGF8 is necessary for proper gastrulation and formation of mesoderm and that FGF8b is the predominant FGF8 spliceform involved in early mesoderm development in Xenopus. Furthermore, FGF8 signaling is necessary for proper posterior neural formation; loss of either FGF8a or a reduction in both FGF8a and FGF8b causes a reduction in the hindbrain and spinal cord domains.  相似文献   

6.
7.
Although FGF signaling plays an integral role in the migration and patterning of mesoderm at gastrulation, the mechanism and downstream targets of FGF activity have remained elusive. Here, we demonstrate that FGFR1 orchestrates the epithelial to mesenchymal transition and morphogenesis of mesoderm at the primitive streak by controlling Snail and E-cadherin expression. Furthermore, we show that FGFR1 functions in mesoderm cell fate specification by positively regulating Brachyury and Tbx6 expression. Finally, we provide evidence that the attenuation of Wnt3a signaling observed in Fgfr1 -/- embryos can be rescued by lowering E-cadherin levels. We propose that modulation of cytoplasmic beta-catenin levels, associated with FGF-induced downregulation of E-cadherin, provides a molecular link between FGF and Wnt signaling pathways at the streak.  相似文献   

8.
9.
Fringe proteins are O-fucose-specific beta-1,3 N-acetylglucosaminyltransferases that glycosylate the extracellular EGF repeats of Notch and enable Notch to be activated by the ligand Delta. In the sea urchin, signaling between Delta and Notch is known to be necessary for specification of secondary mesenchyme cells (SMCs). The Lytechinus variegatus Fringe homologue is expressed in both the signaling and receiving cells during this first Delta-Notch signal. Perturbation of Fringe expression through morpholino antisense oligonucleotide (MO) injection results in fewer SMCs but also causes decreased and delayed archenteron invagination. Partial endoderm specification occurs but expression of some endoderm genes is compromised. The data are consistent with a Fringe-requiring Notch signal as one upstream component of archenteron morphogenesis. Finally, Fringe perturbations result in more severe phenotypes than those previously reported for Notch dominant-negative (LvN(neg)) injections or reported here for Notch MO (NMO) injections. Injecting a combination of LvN(neg) and NMO results in a more severe phenotype than either treatment alone, and this combination phenocopies the fringe MO embryos. Taken together, the results show that Fringe is necessary both for maternal and zygotic Notch signals, and these Notch signals affect specification of mesoderm and endoderm.  相似文献   

10.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen Type IV networks and is expressed by mesenchymal cells during embryonic and fetal development. It is not clear which cells produce nidogen-1 in early developmental stages when no mesenchyme is present. We therefore localized nidogen-1 and its corresponding mRNA at the light and electron microscopic level in Day 7 mouse embryos during the onset of mesoderm formation by in situ hybridization, light microscopic immunostaining, and immunogold histochemistry. Nidogen-1 mRNA was found not only in the cells of the ectoderm-derived mesoderm but also in the cytoplasm of the endoderm and ectoderm, indicating that all three germ layers express it. Nidogen-1 was localized only in fully developed basement membranes of the ectoderm and was not seen in the developing endodermal basement membrane or in membranes disrupted during mesoderm formation. In contrast, laminin-1 and collagen Type IV were present in all basement membrane types at this developmental stage. The results indicate that, in the early embryo, nidogen-1 may be expressed by epithelial and mesenchymal cells, that both cell types contribute to embryonic basement membrane formation, and that nidogen-1 might serve to stabilize basement membranes in vivo. (J Histochem Cytochem 48:229-237, 2000)  相似文献   

11.
We examined the quality of mesoderm induced by the action of activin A on the Xenopus presumptive ectoderm when various concentrations and treatment times were employed. The minimum concentration of activin A to induce mesodermal tissues was inversely proportional to its treatment time. The explants differentiated into different types of mesodermal tissues, from ventral-type to dorsal-type depending on the concentration of activin A and its treatment time. To confirm whether activin A has a role in establishing axial organization, activin A was injected into the blastocoel of late blastulae. About 70% of the injected embryos formed secondary tail-shaped outgrowths in which muscle and neural tube differentiated. The amount of activin A to form secondary outgrowths was 0.5-2.5 pg, roughly consistent with the amount estimated from in vitro experiments. As we have detected almost the same amount of activin homologue in the early embryos (Asashima et al., 1991a), we speculate that activin A may be the natural mesodermal inducer, and that it is responsible for establishing axial organization in the Xenopus embryo.  相似文献   

12.
Genetic studies substantiate that mesodermal convergent extension expressed behind the anteroposterior borderline, in the form of a gradient with the posterior apex after gastrulation, regulates morphogenesis of the posterior zone at the dorsal and dorso-lateral levels which is in full agreement with the model of dorsalization–caudalization. In contrast, how anteroposterior specification of mesodermal tissues occurs at the ventral and latero-ventral levels is not yet understood.  相似文献   

13.
When a Xenopus XTC cell-derived mesoderm-inducing factor (MIF) is injected into the blastocoel of Xenopus embryos before gastrulation, they develop almost normally until just after the onset of mesoderm involution at the internal blastoporal lip. Cells from the entire lining of the blastocoel roof and inner marginal zone then undergo a synchronous, sudden change of contact and arrangement which resembles the transformation undergone by normal mesoderm at its time of involution at the vegetal edge of the marginal zone. We describe a dose-dependent spectrum of subsequent abnormalities in gastrulation and, in cases where gastrulation partially recovers, in the resulting larval pattern. Because of such recovery, embryos injected with widely different doses may appear equally abnormal at the early gastrula stage but very different by control larval stages. Extra spinocaudal axial patterns, in the area of ectopic mesoderm, are seen after MIF doses that just permit recovery of gastrulation. The sudden cellular transformation corresponding to involution, in the ectopically specified mesoderm, spreads throughout the animal cap within 15 min in individuals, at a time significantly later than the earliest normal transformation in the marginal zone. No systematic alteration could, however, be detected in its timing, in relation to a 250-fold range of injected MIF concentration or a 3.5-hr difference in time of injection. The severity of the effects on final embryonic pattern is largely independent of the blastular stage of injections. Splitting of the total injected dose into two, separated by 2 to 3 hr of blastular development, reveals that the degree of effect on gastrulation and patterning depends only upon the highest experienced concentration at any time before response. When fibroblast growth factor (bFGF), a different effective mesoderm inducer, is similarly injected, a similar abnormal cell behavior and ectopic mesoderm formation are seen, but beginning only at midgastrular stages some 1.5 hr beyond that characteristic of XTC-MIF. The findings are introduced and discussed in terms of models for the natural organization of the time course of gastrulation and mesodermal pattern.  相似文献   

14.
15.
XHNF1(&bgr;) is a homeobox-containing gene initially expressed at the blastula stage in the vegetal part of the Xenopus embryo. We investigated its early role by functional ablation, through mRNA injection of an XHNF1(beta)/engrailed repressor fusion construct (XHNF1(beta)/EngR). Dorsal injections of XHNF1(beta)/EngR mRNA abolish dorsal mesoderm formation, leading to axial deficiencies; ventral injections disrupt ventral mesoderm formation without affecting axial development. XHNF1(beta)/EngR phenotypic effects specifically depend on the DNA-binding activity of its homeodomain and are fully rescued by coinjection of XHNF1(beta) mRNA. Vegetal injection of XHNF1(beta)/EngR mRNA blocks the mesoderm-inducing ability of vegetal explants. Both B-Vg1 and VegT maternal determinants trigger XHNF1(beta) expression in animal caps. XHNF1(beta)/EngR mRNA blocks B-Vg1-mediated, but not by eFGF-mediated, mesoderm induction in animals caps. However, wild-type XHNF1(beta) mRNA does not trigger Xbra expression in animal caps. We conclude that XHNF1(beta) function is essential, though not sufficient, for mesoderm induction in the Xenopus embryo.  相似文献   

16.
H L Sive  K Hattori  H Weintraub 《Cell》1989,58(1):171-180
The cement gland is an ectodermal organ in the head of frog embryos, lying anterior to any neural tissue. As analyzed by specific RNA expression, cement gland, like neural tissue, was induced by the dorsal mesoderm. Interestingly, mesoderm with the highest cement gland-inducing potential lay posterior to the ectoderm fated to form this organ, indicating that its induction occurred at a distance from the inducer source. Cement gland induction first occurred during early gastrulation. However, most initially induced cells did not contribute to the mature cement gland, but instead formed part of the neural plate. This change in fate could be reconstituted in vitro. These results suggest that determination of part of the anteroposterior axis occurs progressively, where future neural ectoderm is first induced to a cement glandlike state. As gastrulation proceeds, further induction by mesoderm may override this state, which persists only in the extreme anterior of the embryo.  相似文献   

17.
18.
Summary This study aims to describe the regulation of vimentin and cytokeratin expression during differentiation of primary mesenchymal cells in the 7 day old rabbit embryo; unusual intermediate filament protein expression patterns have already been found in this species at later embryonic stages. Double-labelling indirect immunofluorescence assays with a panel of monoclonal intermediate filament antibodies are performed on frozen sections and compared with aldehyde-fixed plastic-embedded tissues. The histological part of the study, serving as a basis for the topographical orientation in the immunostained frozen sections, emphasises many similarities between the primitive streak embryos of the rabbit and the chick. The immunohistochemical analysis reveals cytokeratin expression to varying degrees in all germ layers. Vimentin expression, always in combination with cytokeratin expression, is found in a few cells of the ectoderm, endoderm and lateral mesoderm, but not in the primary mesenchymal cells of either the primitive node or the primitive streak. The results are discussed in relation to recent experimental findings on differentiation and morphogenetic processes in the primitive streak embryo. While these complex expression patterns make it seem unlikely that intermediate filament protein subtypes are expressed independently of cellular function during development, no indication can be found for a relation between vimentin expression and the morphogenetic changes thought to be important during mesoderm formation.Supported by the Deutsche Forschungsgemeinschaft (Wa 359-9) and by the Netherlands Cancer Foundation Offprint requests to: C. Viebahn  相似文献   

19.
Establishment of left-right (L-R) asymmetry is fundamental to vertebrate development. Several genes involved in L-R asymmetry have been described. In the Xenopus embryo, Vg1/activin signals are implicated upstream of asymmetric nodal related 1 (Xnr1) and Pitx2 expression in L-R patterning. We report here that Zic3 carries the left-sided signal from the initial activin-like signal to determinative factors such as Pitx2. Overexpression of Zic3 on the right side of the embryo altered the orientation of heart and gut looping, concomitant with disturbed laterality of expression of Xnr1 and Pitx2, both of which are normally expressed in the left lateral plate mesoderm. The results indicate that Zic3 participates in the left-sided signaling upstream of Xnr1 and Pitx2. At early gastrula, Zic3 was expressed not only in presumptive neuroectoderm but also in mesoderm. Correspondingly, overexpression of Zic3 was effective in the L-R specification at the early gastrula stage, as revealed by a hormone-inducible Zic3 construct. The Zic3 expression in the mesoderm is induced by activin (beta) or Vg1, which are also involved in the left-sided signal in L-R specification. These findings suggest that an activin-like signal is a potent upstream activator of Zic3 that establishes the L-R axis. Furthermore, overexpression of the zinc-finger domain of Zic3 on the right side is sufficient to disturb the L-R axis, while overexpression of the N-terminal domain on the left side affects the laterality. These results suggest that Zic3 has at least two functionally important domains that play different roles and provide a molecular basis for human heterotaxy, which is an L-R pattern anomaly caused by a mutation in human ZIC3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号