首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have conducted a biophysical scan of the rod region of dystrophin, targeting all 24 single spectrin type repeat, STR, motifs and 23 2-STR tandem motifs. Of these 47 targets, we were able to express and purify 39 and have characterized them with regard to various stability metrics: thermodynamic stability as assessed by thermal and solvent denaturation, as well as resistance to proteolysis. We find that while all measured parameters varied greatly throughout the rod, there was no general stabilization of the 2-STR motifs over single STR motifs. However, stabilization by thermodynamic interaction was seen in six regions: strongly in D16:17 and D21:22 and to a lesser extent in D2:3, D4:5, D6:7 and D20:21. This indicates that these STRs interact structurally. In the rest of the rod, no cooperativity was seen and STRs appear to be thermodynamically independent. Stability also varied widely along the rod, with some motifs that are barely stable, beginning to unfold at physiological temperatures; these are largely found in the central rod region from D7 to D15. Regions of high stability were found in the interacting motifs, as well as a general trend toward increasing stability at the C-terminus of the rod. Interestingly, the rod region nNOS binding site occurs at such an interacting, very stable site, D16:17. Overall this describes a highly heterogeneous rod region.  相似文献   

2.
B. Schneider  W. Herth 《Protoplasma》1986,131(2):142-152
Summary Germ roots of several higher plants—maize (Zea mays), mung bean (Vigna radiata) and cress (Lepidium sativum)—were freeze-fractured without cryoprotection in order to confirm and extend the informations on frequency and distribution of plasma membrane particle complexes with respect to cellulose formation. In all three objects the PF of developing xylem elements showed rosette accumulations in the regions of wall thickenings. The rosette-distribution pattern ranges from random in a young stage, to more grouped in a probable intermediate stage to strictly localized in later stages. The frequency of rosettes increases from stage to stage.In all three objects the EF of developing xylem elements is relatively poor in particles. Observations of terminal globules were rare and undistinct. This leads to the assumption that rosettes on the PF and terminal globules on the EF are not part of the same complex.A comparison of the number and distribution of microtubules underlying the xylem wall thickenings with rosette frequency and distribution leads to the conclusion that there seem to be no direct connections between these two structures. Microtubules may be involved in grouping of rosettes, thus indirectly orienting microfibril deposition. Calculations based on the observed rosette frequencies and the amount of wall material formed indicate that in xylem development 1,000 nm elementary fibril per rosette per minute may be formed and that the active phase of one rosette may be about 10 minutes.Abbreviations EF exoplasmic fracture face - PF protoplasmic fracture face  相似文献   

3.
The osmium tetroxide-potassium pyroantimonate technique was used to localize Ca2+-containing sites in the protozoan Tritrichomonas foetus. Reaction product was seen in association with the plasma membrane and with a membrane-bound organelle, the hydrogenosome. Reaction product was also seen in some cytoplasmic vesicles and in lysosomes. Treatment of the ultrathin sections with EGTA resulted in removal of the pyroantimonate precipitate. These results suggest that the hydrogenosome may be involved in the control of the intracellular concentration of Ca2+ in T. foetus.  相似文献   

4.
Triton X-100 (in concentrations which did not cause a significant solubilization of membrane material) caused aggregation of the intramembrane particles of human erythrocyte ghosts.Ghosts from which the extrinsic proteins had been removed by alkali treatment showed a temperature-induced aggregation of the particles. With virtually no spectrin present, the particles in these stripped ghosts could still be aggregated by manipulations with ionic strength and pH, or by the addition of calcium.Recombinant vesicles were made from a Triton X-100 extract and a mixture of phospholipids with a composition which resembled that of the inner monolayer of erythrocyte membrane. In these recombinants the same manipulations with ionic strength and pH and the addition of calcium caused a rearrangement of the particles, resulting in the appearance of particle-free areas. In recombinants prepared from a Trixon X-100 extract and egg phosphatidylcholine the lateral distribution of the particles was not altered by these manipulations.It is concluded that in the erythrocyte membrane the intramembrane particles can be aggregated by effects of external agents on lipid components. In this light the role of spectrin in stabilizing the membrane by interactions with lipids in the inner monolayer is discussed.  相似文献   

5.
Mutations in sarcoglycans have been reported to cause autosomal-recessive limb-girdle muscular dystrophies. In skeletal and cardiac muscle, sarcoglycans are assembled into a complex on the sarcolemma from four subunits (alpha, beta, gamma, delta). In this report, we present a detailed structural analysis of sarcoglycans using deletion study, limited proteolysis and co-immunoprecipitation. Our results indicate that the extracellular regions of sarcoglycans consist of distinctive functional domains connected by proteinase K-sensitive sites. The N-terminal half domains are required for sarcoglycan interaction. The C-terminal half domains of beta-, gamma- and delta-sarcoglycan consist of a cysteine-rich motif and a previously unrecognized conserved sequence, both of which are essential for plasma membrane localization. Using a heterologous expression system, we demonstrate that missense sarcoglycan mutations affect sarcoglycan complex assembly and/or localization to the cell surface. Our data suggest that the formation of a stable complex is necessary but not sufficient for plasma membrane targeting. Finally, we provide evidence that the beta/delta-sarcoglycan core can associate with the C-terminus of dystrophin. Our results therefore generate important information on the structure of the sarcoglycan complex and the molecular mechanisms underlying the effects of various sarcoglycan mutations in muscular dystrophies.  相似文献   

6.
Summary The Duchenne muscular dystrophy gene product dystrophin has been shown to be located on the inside of the plasma membrane. We investigated the developmental expression of dystrophin on rat skeletal muscle plasma membrane with the antiserum raised against a fragment of the polypeptide predicted from the human dystrophin cDNA map [Koenig et al. (1987) Cell 50: 509–517]. Plasma membrane of primary myotubes of the extensor digitorum longus (EDL) muscle was not initially stained by the antiserum; staining began at day 19 of embryonic life, and plasma membrane of all polynuclear muscle cells including secondary myotubes was uniformly stained by day 5 after birth. These immunohistochemical findings were supported by immunoblot analysis. These results indicate that plasma membrane of myotubes at their first appearance is not lined with dystrophin at the detectable level but becomes lined as their development proceeds.  相似文献   

7.
A plasma membrane-enriched fraction (fraction 1B) has been obtained from rat aortic myocytes grown in primary culture. Plasma membrane markers, 5′-nucleotidase and ouabain-sensitive (Na+ + K+)-ATPase, are enriched 4.1- and 8.7-fold, respectively, in this fraction. Although endoplasmic reticulum marker NADPH-cytochrome c reductase is the most enriched in mitochondrial and heavy sucrose density gradient fractions, substantial enrichment of this marker is also observed in membrane fraction 1. This membrane preparation therefore contains a certain quantity of endoplasmic reticulum. Cytochrome c oxidase is de-enriched by a factor of 0.04 in fraction 1, indicating that it is essentially clear of mitochondrial contamination. Homogenization of aortic media-intima layers using a whole-tissue technique induces greater disruption of mitochondria and subsequent contamination of membrane fractions than does the procedure for cell disruption. Analysis of electrophoretic gels, vesicle density distribution and electron micrographs of enriched membrane fractions provide evidence that plasma membrane enriched from cultured myocytes is less traumatized than comparable fractions obtained from intact tissue. The potential value of such a highly enriched, minimally disrupted plasma membrane preparation is discussed.  相似文献   

8.
Summary Using morphometric analysis of thin sections and freeze-fracture replicas, the ultrastructure of isolated rat myocytes prepared by collagenase digestion (Powell et al. 1980) was compared with that of myocytes fixed by perfusion of intact myocardium. The volumes of myofibrils, mitochondria, nuclei, sarcoplasmic reticulum and lipid droplets in the isolated myocytes did not differ from those of their counterparts in the intact heart, but the volume occupied by transverse tubules was apparently reduced. The isolated cells had significantly shorter sarcomeres than did cells in the intact tissue, and this was associated with an altered topography of plasma membrane surface folds at the level of the Z-lines. Plasma membrane intramembrane particles were randomly distributed and showed the same numerical density on the E-faces of both isolated and intactheart myocytes. However, P-face particle density was slightly reduced in the isolated cells. It is concluded that the few differences detected in the isolated cells do not reflect any fundamental derangement of their properties.  相似文献   

9.
Summary The mechanism of plasma membrane turnover was investigated using the duckling salt gland as a model system. Feeding fresh water to saltstressed ducklings results in a decrease in the Na, K-ATPase in salt gland to nonstressed levels in about 7 days, as measured by ATP hydrolysis and 3H-ouabain binding. Electron micrographs reveal that this is accompanied by a decrease in plasma membrane infoldings on the basal and lateral borders of gland secretory cells. Simultaneously there is an increase in filamentous material and a rise in acid phosphatase and peptidase activities in these cells. Cytochemistry shows that the acid phosphatase activity is mostly associated with the basal or basolateral regions of secretory cells. These observations could indicate that the removal of plasma membrane components is accomplished by internalization and digestion within the secretory cells.  相似文献   

10.
The stability of the human erythrocyte membrane skeletal network is reported to be dependent on the state of aggregation of spectrin and decreased or increased by polyphosphate anions or the polyamine, spermine, respectively. We have employed polyacrylamide gel electrophoresis and electron spin resonance (ESR) utilizing spin labels specific for membrane proteins, bilayer lipids, or cell-surface sialic acid in order to gain insight into these observations and into the reliability of the ESR spectra of the protein-specific spin label used to correctly report the interactions of the skeletal protein network. The major findings are: (1) We confirm previous reports that the preferred state of spectrin aggregation in the skeletal network is tetrameric and that spectrin can be reversibly transformed to dimeric spectrin and back to tetrameric spectrin on the membrane. (2) The ESR spectra of the protein specific maleimide spin label employed accurately reflect the state of aggregation of spectrin. (3) As dimeric spectrin is increased on the membrane or when 2,3-bis-phosphoglycerate was added to spin-labeled membranes, increased segmental motion of protein spin label binding sites reflecting decreased protein-protein interactions in the skeletal network is observed (P < 0.002 and P < 0.005, respectively). (4) Conversely, as protein-protein interactions between skeletal proteins or between skeletal proteins and the bilayer are increased by spermine (reflected in the total inability to extract spectrin from the membrane in contrast to control membranes), highly decreased segmental motion of the protein specific spin label binding sites is observed (P < 0.005). (5) The dimeric-tetrameric state of spectrin aggregation on the membrane does not have influence on the order or motion of bilayer lipids nor on the rotational rate of spin-labeled, cell-surface sialic acid, a result also observed when protein-protein interactions were decreased by 2,3-bisphosphoglycerate. In contrast, increased protein-protein interactions by addition of spermine produced a small, but significant, increase in order and decrease in motion of bilayer lipids near the membrane surface as well as a nearly 40% decrease in the apparent rotational correlation time of spin labeled, cell surface sialic acid (P < 0.002). These latter observations are discussed with reference to possible associations of phospholipids and the major, transmembrane sialoglycoprotein with the skeletal protein network.  相似文献   

11.
Summary Osmotic contraction of protoplasts isolated from cold acclimated leaves ofSecale cereale L. cv. Puma results in the formation of exocytotic extrusions of the plasma membrane. Numerous knobs or polyps were observed on the surface of the protoplasts with scanning electron microscopy. In thin sections, the extrusions were bounded by the plasma membrane with a densely osmiophilic interior. Cross-fracturing of the extrusions revealed aparticulate bodies within, a further indication that the interior of the extrusions was predominantly lipid material. Freeze-fracture of the plasma membrane suggests a possible source of this lipid material. Following osmotic contraction, the particle density on the plasma membrane protoplasmic face (PFp) increased, being reflected in both a substantial increase in paracrystalline arrays and an increase in the particle density in non-crystalline regions. This increase in particle density indicates that lipid material is preferentially lost from the plasma membrane during contraction. The density on the exoplasmic face (EFp) did not change. Together, these findings suggest that during hypertonic contraction of acclimated protoplasts, lipid material is preferentially subducted from the plasma membrane and sequestered into lipid bodies (the osmiophilic regions). The formation of lipid bodies and extrusions was readily reversible. Following osmotic expansion of acclimated protoplasts, the extrusions were retracted back into the plane of the plasma membrane.Department of Agronomy Series Paper no. 1497.  相似文献   

12.
13.
H. Löw  F. L. Crane 《Protoplasma》1995,184(1-4):158-162
Summary The development of ideas concerning plasma membrane redox reactions in normal and transformed animal cells is described, with emphasis on transferrin and ceruloplasmin. Control by hormones and growth factors, as well as the NAD+/NADH ratio in the cell are important in distinguishing the two types of cells.  相似文献   

14.
Summary We examined the morphological expression of dystrophin in the intrafusal muscle fibers in skeletal muscle from normal human and Duchenne muscular dystrophy (DMD) patients, using antisera against the N-terminal and C-terminal regions of dystrophin. The intrafusal fibers of normal muscle express dystrophin on their cell surface membrane, but those of DMD muscle do not.Abbreviation DMD Duchenne muscular dystrophy  相似文献   

15.
Summary An NADH-ferricyanide reductase activity resistant to inactivation by cytochemical procedures was examined during decidualization of rat endometrium. Resistant activity was restricted to plasma membranes, distal elements of the Golgi apparatus, and discoid cisternae and cytoplasmic vesicles of decidual cells of endometrium of the pseudopregnant rat on days 3, 4, 5, 7, and 9, after mating. The procedure reduced or eliminated any evidence of NADH-ferricyanide reductase activity from other cellular components such as endoplasmic reticulum, nuclei, and mitochondria. The observations of the glutaraldehyde-resistant reductase in both plasma membranes and discoid cisternae may indicate a role for the latter in the biosynthesis of plasma membranes during decidualization when massive cell proliferation and membrane biosynthesis occur. The origin of the discoid cisternae is tentatively ascribed to the mature faces of the Golgi apparatus.Work supported in part by a grant from the NIH CA1880101 to D.J.M.  相似文献   

16.
The presence and distribution of cholesterol in mature and immature epididymal spermatozoa was analyzed using filipin as a cytochemical tool in freeze-fracture replicas and thin section preparations. The polyenic-antibiotic filipin formed complexes with 3, beta -OH sterols, producing characteristic protrusions, or pits, that were heterogeneously distributed in the plasma membrane of stallion spermatozoa, revealing a specific organization in a functionally specialized area of the gamete. The acrosomal region of the sperm head presented a significantly higher density of filipin sterol complexes than the postacrosomal region, which was usually free of these complexes. The plasma membrane of the flagellum also showed filipin sterol complexes randomly distributed in freeze-fracture replicas. The strong filipin labeling observed in the membrane of spermatozoa obtained from the caput region of the epididymis decreased significantly during epididymal passage. The significance of these changes is not completely understood, but they might contribute to establishing the molecular organization necessary for sperm transit and storage in the epididymis as well as to development of motile spermatozoa that are able to fertilize the oocyte and induce normal embryonic development.  相似文献   

17.
Summary Following osmotic contraction of isolated rye protoplast (Secale cereale L. cv. Puma) that results in nearly a 50% reduction in volume, the plasma membrane was smooth, with no folding or pleating. Instead, deletion of plasma membrane occurred and numerous cytoplasmic vesicles were observed. As a result, the area of the plasma membrane was reduced by approximately 40%. Thin sections revealed that the cytoplasmic vesicles were membrane bound and not merely voids in the cytoplasm. High resolution video microscopy revealed the extent of vesiculation showing large clusters of cytoplasmic vesicles following osmotic contraction. Labeling the plasma membrane with fluorescein-Con-A prior to hypertonic contraction suggested that the cytoplasmic vesicles were derived from the plasma membrane. Freeze-fracture particle density on both the protoplasmic (PFp) and exoplasmic face (EFp) of the plasma membrane remained unchanged following contraction, which is consistent with a unit-membrane deletion into cytoplasmic vesicles. Upon partial re-expansion of the protoplasts, thin sections showed that the vesicles remained in the cytoplasm. These results using osmotic manipulation confirm earlier observations of isolated protoplasts at the light microscope level. Upon contraction plasma membrane is deleted into cytoplasmic vesicles, which are not readily reincorporated into the plasma membrane upon expansion. Lysis occurs before the original volume and surface area are regained.Department of Agronomy Series Paper no. 1456.  相似文献   

18.
Summary The polyene compound, filipin, was used as a probe to localize cholesterol in the membranes of the rat cardiac muscle cell, with particular reference to the sarcoplasmic reticulum (SR). Filipin binds specifically to cholesterol (and related 3--hydroxysterols) in membranes, producing distinct deformations which can be viewed by freeze-fracture and used as markers for the presence of cholesterol-rich regions in the membrane plane. In freeze-fracture replicas of filipin-treated rat myocardium, the muscle cells revealed abundant deformations in their plasma membranes, no deformations in mitochondrial membranes, and an intermediate response in the SR. These results are in agreement with the levels of cholesterol reported in isolated fractions of the different membrane types, and confirm the specificity of filipin action. Within the SR, the filipin-induced deformations were not randomly distributed but occurred more commonly in free SR at or near the Z-region of the sarcomere than in other parts of the free SR or the junctional SR. This finding is interpreted as evidence for a non-homogeneous distribution of cholesterol in cardiac muscle cell SR. The possible significance of cholesterol in relation to structural differentiation and function of the SR is discussed.  相似文献   

19.
Summary Freeze-fracture studies were conducted on the membranes of normal cockroach hemocytes. The plasmalemma is asymmetric with the A fracture face containing 80–100 Å membrane intercalated particles at a concentration of 2500/2. The B fracture face contains 120–150 Å particles with a relatively low density (800/2). The nuclear envelope displays an asymmetry with the A fracture face containing 1500 particles/2 and the B face containing 300/ 2. No significant particle size differences were observed in nuclear envelope fracture faces. Two types of symmetric membranes were also found in these cells. Both A and B fracture faces of the membrane surrounding the numerous cytoplasmic inclusion bodies contain particle sizes and concentrations similar to the B face of the plasmalemma. A second type of symmetry was observed in cells apparently engaged in exocytosis. Vesicles (0.1 D) from this process were completely particle free on both fracture faces. Such particle free vesicles could be found in the cytoplasm, attached to the plasmalemma, or completely separated from the cell.Supported by a Pharmaceutical Manufacturers Association Foundation Fellowship.The author wishes to thank Ms. Annalena K. Charla for assistance in plate preparation, Dr. Julius Schultz and the Papanicolaou Cancer Research Institute for use of the freeze-etch device, and Dr. David Smith for the electron microscope facilities.  相似文献   

20.
ATPases of cardiac cells are known to be among the most important enzymes to maintain the fluxes of vital cations by hydrolysis of the terminal high-energy phosphate of ATP. Biochemically the activities of Ca2+-pump ATPase, Ca2+/Mg2+-ecto ATPase, Na+,K+-ATPase and Mg2+-ATPase are determined in homogenates and isolated membranes as well as in myofibrillar and mitochondrial fractions of various purities. Such techniques permit estimation of enzyme activitiesin vitro under optimal conditions without precise enzyme topography. On the other hand, cytochemical methods demonstrate enzyme activityin situ, but not under optimal conditions. Until recently several cytochemical methods have been employed for each enzyme in order to protect its specific activity and precise localization but the results are difficult to interpret. To obtain more consistent data from biochemical and cytochemical point of view, we modified cytochemical methods in which unified conditions for each ATPase were used. The fixative solution (1% paraformaldehyde –0.2% glutaraldehyde in 0.1 M Tris Base buffer, pH 7.4), the same cationic concentrations of basic components in the incubation medium (0.1 M Tris Base, 2mM Pb(NO2)3, 5 mM MgSO4, 5 mM ATP) and selective stimulators or inhibitors were employed. The results reveal improved localization of Ca2+-pump ATPase, Na+–K+ ATPase and Ca2+/Mg2+-ecto ATPase in the cardiac membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号