首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amyloid‐β peptide (Aβ) generation initiated by β‐site amyloid precursor protein cleaving enzyme 1 BACE1 is a critical cause of Alzheimer's disease. In the course of our ongoing investigation of natural anti‐dementia resources, the ethyl acetate (EtOAc) fraction exerted strong BACE1‐specific inhibition with the half maximal inhibitory concentration (IC50) value of 9.2 × 10?5 μg/mL. Furthermore, Aβ(25–35)‐induced cell death was predominantly prevented by the EtOAc fraction of Allomyrina dichotoma larvae through diminishing of cellular oxidative stress and attenuating apoptosis by inhibiting caspase‐3 activity. Taken together, the present study demonstrated that A. dichotoma larvae possess novel neuroprotective properties not only via the selective and specific inhibition of BACE1 activity but also through the alleviation of Aβ(25–35)‐induced toxicity, which may raise the possibility of therapeutic application of A. dichotoma larvae for preventing and/or treating dementia.  相似文献   

2.
The Swedish mutation within the amyloid precursor protein (APP) causes early‐onset Alzheimer’s disease due to increased cleavage of APP by BACE1. While β‐secretase shedding of Swedish APP (APPswe) largely results from an activity localized in the late secretory pathway, cleavage of wild‐type APP occurs mainly in endocytic compartments. However, we show that liberation of Aβ from APPswe is still dependent on functional internalization from the cell surface. Inspite the unchanged overall β‐secretase cleaved soluble APP released from APPswe secretion, mutations of the APPswe internalization motif strongly reduced C99 levels and substantially decreased Aβ secretion. We point out that α‐secretase activity‐mediated conversion of C99 to C83 is the main cause of this Aβ reduction. Furthermore, we demonstrate that α‐secretase cleavage of C99 even contributes to the reduction of Aβ secretion of internalization deficient wild‐type APP. Therefore, inhibition of α‐secretase cleavage increased Aβ secretion through diminished conversion of C99 to C83 in APP695, APP695swe or C99 expressing cells.  相似文献   

3.
4.
5.
Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies.  相似文献   

6.
The common neurodegenerative disorder known as Alzheimer’s disease is characterized by cerebral neuritic plaques of amyloid β (Aβ) peptide. Plaque formation is related to the highly aggregative property of this peptide, because it polymerizes to form insoluble plaques or fibrils causing neurotoxicity. Here, we expressed Aβ peptide as a new causing agent to endoplasmic reticulum (ER) stress to study ER stress occurred in plant. When the dimer of Aβ1–42 peptide was expressed in maturing seed under the control of the 2.3‐kb glutelin GluB‐1 promoter containing its signal peptide, a maximum of about 8 μg peptide per grain accumulated and was deposited at the periphery of distorted ER‐derived PB‐I protein bodies. Synthesis of Aβ peptide in the ER lumen severely inhibited the synthesis and deposition of seed storage proteins, resulting in the generation of many small and abnormally appearing PB bodies. This ultrastructural change was accounted for by ER stress leading to the accumulation of aggregated Aβ peptide in the ER lumen and a coordinated increase in ER‐resident molecular chaperones such as BiPs and PDIs in Aβ‐expressing plants. Microarray analysis also confirmed that expression of several BiPs, PDIs and OsbZIP60 containing putative transmembrane domains was affected by the ER stress response. Aβ‐expressing transgenic rice kernels exhibited an opaque and shrunken phenotype. When grain phenotype and expression levels were compared among transgenic rice grains expressing several different recombinant peptides, such detrimental effects on grain phenotype were correlated with the expressed peptide causing ER stress rather than expression levels.  相似文献   

7.
Astrogliosis is a hallmark of Alzheimer′s disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid‐β modulates β1‐integrin activity and triggers NADPH oxidase (NOX)‐dependent astrogliosis in vitro and in vivo. Amyloid‐β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1‐integrin in cultured astrocytes. This mechanism promotes β1‐integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple‐transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1‐integrin in reactive astrocytes which correlates with the amyloid β‐oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1‐integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1‐integrin were significantly associated with increased amyloid‐β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1‐integrin which in turn leads to enhancing β1‐integrin and NOX2 activity via NOX‐dependent mechanisms. These observations may be relevant to AD pathophysiology.  相似文献   

8.
Short synthetic peptides homologous to the central region of Aβ but bearing proline residues as β‐sheet blockers have been shown in vitro to bind to Aβ with high affinity, partially inhibit Aβ fibrillogenesis, and redissolve preformed fibrils. While short peptides have been used extensively as therapeutic drugs in medicine, two important problems associated with their use in central nervous system diseases have to be addressed: (a) rapid proteolytic degradation in plasma, and (b) poor blood–brain barrier (BBB) permeability. Recently, we have demonstrated that the covalent modification of proteins with the naturally occurring polyamines significantly increases their permeability at the BBB. We have extended this technology to iAβ11, an 11‐residue β‐sheet breaker peptide that inhibits Aβ fibrillogenesis, by covalently modifying this peptide with the polyamine, putrescine (PUT), and evaluating its plasma pharmacokinetics and BBB permeability. After a single intravenous bolus injection in rats, both 125I‐YiAβ11 and 125I‐PUT‐YiAβ11 showed rapid degradation in plasma as determined by trichloroacetic acid (TCA) precipitation and paper chromatography. By switching to the all d ‐enantiomers of YiAβ11 and PUT‐YiAβ11, significant protection from degradation by proteases in rat plasma was obtained with only 1.9% and 5.7% degradation at 15 min after intravenous bolus injection, respectively. The permeability coefficient × surface area product at the BBB was five‐ sevenfold higher in the cortex and hippocampus for the 125I‐PUT‐d ‐YiAβ11 compared to the 125I‐d ‐YiAβ11, with no significant difference in the residual plasma volume. In vitro assays showed that PUT‐d ‐YiAβ11 retains its ability to partially inhibit Aβ fibrillogenesis and dissolve preformed amyloid fibrils. Because of its five‐ to sevenfold increase in permeability at the BBB and its resistance to proteolysis in the plasma, this polyamine‐modified β‐sheet breaker peptide may prove to be an effective inhibitor of amyloidogenesis in vivo and, hence, an important therapy for Alzheimer's disease. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 371–382, 1999  相似文献   

9.
The conformation of thymosin β9 in solution of 40% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol-d2 in water has been investigated by two-dimensional 1H-nmr spectroscopy. Under this condition thymosin β9 adopts an ordered structure. The determination of the conformation of the peptide was based on a set of 304 approximate interproton distance constraints derived from nuclear Overhauser enhancement measurements. The conformation of thymosin β9 includes two helical regions from residues 4 to 27 and 32 to 41. The two helices are separated by a poorly defined loop region between amino acids 28 and 31; the N-terminus of thymosin B9 shows random-coil structure only. © 1997 John Wiley & Sons, Inc. Biopoly 41: 623–634, 1997  相似文献   

10.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

11.
Alzheimer''s disease (AD) is characterized by neuronal loss and accumulation of β-amyloid-protein (Aβ) in the brain parenchyma. Sleep impairment is associated with AD and affects about 25–40% of patients in the mild-to-moderate stages of the disease. Sleep deprivation leads to increased Aβ production; however, its mechanism remains largely unknown. We hypothesized that the increase in core body temperature induced by sleep deprivation may promote Aβ production. Here, we report temperature-dependent regulation of Aβ production. We found that an increase in temperature, from 37 °C to 39 °C, significantly increased Aβ production in amyloid precursor protein-overexpressing cells. We also found that high temperature (39 °C) significantly increased the expression levels of heat shock protein 90 (Hsp90) and the C-terminal fragment of presenilin 1 (PS1-CTF) and promoted γ-secretase complex formation. Interestingly, Hsp90 was associated with the components of the premature γ-secretase complex, anterior pharynx-defective-1 (APH-1), and nicastrin (NCT) but was not associated with PS1-CTF or presenilin enhancer-2. Hsp90 knockdown abolished the increased level of Aβ production and the increased formation of the γ-secretase complex at high temperature in culture. Furthermore, with in vivo experiments, we observed increases in the levels of Hsp90, PS1-CTF, NCT, and the γ-secretase complex in the cortex of mice housed at higher room temperature (30 °C) compared with those housed at standard room temperature (23 °C). Our results suggest that high temperature regulates Aβ production by modulating γ-secretase complex formation through the binding of Hsp90 to NCT/APH-1.  相似文献   

12.
ß‐Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti‐Aβ‐antibodies, termed Aβ‐nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ‐specific nanobodies was identified by proteolytic epitope extraction‐ and excision‐mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC‐protease, and LysC‐protease). Matrix‐assisted laser desorption ionization – mass spectrometric analysis of the affinity – elution fraction provided the epitope, Aβ(17–28), in the mid‐ to carboxy‐terminal domain of Aβ, which has been shown to exert an Aß‐fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17–28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1–40) or Aβ‐peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ‐nanobodies and Aβ(1–40) and the Aβ(17–28) epitope provided KD values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ‐aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Aggregation of Aβ peptides is a seminal event in Alzheimer's disease. Detailed understanding of the Aβ assembly process would facilitate the targeting and design of fibrillogenesis inhibitors. Here, conformational studies using FTIR spectroscopy are presented. As a model peptide, the 11–28 fragment of Aβ was used. This model peptide is known to contain the core region responsible for Aβ aggregation. The structural behavior of the peptide during aggregation provoked by the addition of water to Aβ(11–28) solution in hexafluoroisopropanol was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21–23 (A21G, E22K, E22G, E22Q and D23N). The results showed that the aggregation of the peptides proceeds via a helical intermediate, and it is possible that the formation of α‐helical structures is preceded by creation of 310‐helix/310‐turn structures. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
16.
Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid‐β (Aβ) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aβ peptide deposits and the details of the metal‐binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aβ residues 1–16 fused to the N‐terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti‐Aβ N‐terminal antibody WO2. The structure demonstrates that Aβ residues 10–16, which are not in complex with the antibody, adopt a mixture of local polyproline II‐helix and turn type conformations, enhancing cooperativity between the two adjacent histidine residues His13 and His14. Furthermore, this relatively rigid region of Aβ (residues, 10–16) appear as an almost independent unit available for trapping metal ions and provides a rationale for the His13‐metal‐His14 coordination in the Aβ1–16 fragment implicated in Aβ metal binding. This novel structure, therefore, has the potential to provide a foundation for investigating the effect of metal ion binding to Aβ and illustrates a potential target for the development of future Alzheimer's disease therapeutics aimed at stabilizing the N‐terminal monomer structure, in particular residues His13 and His14, and preventing Aβ metal‐binding‐induced neurotoxicity.Proteins 2013; 81:1748–1758. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Inheritance of the apolipoprotein E4 (apoE4) genotype has been identified as the major genetic risk factor for late‐onset Alzheimer's disease (AD). Studies have shown that the binding between apoE and amyloid‐β (Aβ) peptides occurs at residues 244–272 of apoE and residues 12–28 of Aβ. ApoE4 has been implicated in promoting Aβ deposition and impairing clearance of Aβ. We hypothesized that blocking the apoE/Aβ interaction would serve as an effective new approach to AD therapy. We have previously shown that treatment with Aβ12‐28P can reduce amyloid plaques in APP/PS1 transgenic (Tg) mice and vascular amyloid in TgSwDI mice with congophilic amyloid angiopathy. In the present study, we investigated whether the Aβ12‐28P elicits a therapeutic effect on tau‐related pathology in addition to amyloid pathology using old triple transgenic AD mice (3xTg, with PS1M146V, APPSwe and tauP30IL transgenes) with established pathology from the ages of 21 to 26 months. We show that treatment with Aβ12‐28P substantially reduces tau pathology both immunohistochemically and biochemically, as well as reducing the amyloid burden and suppressing the activation of astrocytes and microglia. These affects correlate with a behavioral amelioration in the treated Tg mice.

  相似文献   


18.
This paper describes the synthesis and biological evaluation of a new series of 2,5-diphenyl-1,3,4-oxadiazole (1,3,4-DPOD) derivatives for detecting β-amyloid plaques in Alzheimer’s brains. The affinity for β-amyloid plaques was assessed by an in vitro binding assay using pre-formed synthetic Aβ42 aggregates. The new series of 1,3,4-DPOD derivatives showed affinity for Aβ42 aggregates with Ki values ranging from 20 to 349 nM. The 1,3,4-DPOD derivatives clearly stained β-amyloid plaques in an animal model of Alzheimer’s disease, reflecting the affinity for Aβ42 aggregates in vitro. Compared to 3,5-diphenyl-1,2,4-oxadiazole (1,2,4-DPOD) derivatives, they displayed good penetration of and fast washout from the brain in biodistribution experiments using normal mice. The novel radioiodinated 1,3,4-DPOD derivatives may be useful probes for detecting β-amyloid plaques in the Alzheimer’s brain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号