首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate reductase-deficient barley (Hordeum vulgare L.) mutants were assayed for the presence of a functional molybdenum cofactor determined from the activity of the molybdoenzyme, xanthine dehydrogenase, and for nitrate reductase-associated activities. Rocket immunoelectrophoresis was used to detect nitrate reductase cross-reacting material in the mutants. The cross-reacting material levels of the mutants ranged from 8 to 136% of the wild type and were correlated with their nitrate reductase-associated activities, except for nar 1c, which lacked all associated nitrate reductase activities but had 38% of the wild-type cross-reacting material. The cross-reacting material of two nar 1 mutants, as well as nar 2a, Xno 18, Xno 19, and Xno 29, exhibited rocket immunoprecipitates that were similar to the wild-type enzyme indicating structural homology between the mutant and wild-type nitrate reductase proteins. The cross-reacting materials of the seven remaining nar 1 alleles formed rockets only in the presence of purified wild-type nitrate reductase, suggesting structural modifications of the mutant cross-reacting materials. All nar 1 alleles and Xno 29 had xanthine dehydrogenase activity indicating the presence of functional molybdenum cofactors. These results suggest that nar 1 is the structural gene for nitrate reductase. Mutants nar 2a, Xno 18, and Xno 19 lacked xanthine dehydrogenase activity and are considered to be molybdenum cofactor deficient mutants. Cross-reacting material was not detected in uninduced wild-type or mutant extracts, suggesting that nitrate reductase is synthesized de novo in response to nitrate.  相似文献   

2.
The role of phytochrome in the induction of nitrate reductase of etiolated field peas (Pisum arvense L.) was examined. Terminal bud nitrate concentration increased in darkness, and the increase correlated with induction of nitrate reductase following brief exposure of intact plants to red, blue, far red, and white lights. Brief light exposure of intact plants stimulated nitrate uptake and induction of nitrate reductase by terminal buds subsequently excised and incubated on nitrate solution in darkness; exposure of excised buds in contact with nitrate led to less uptake but more induction. Nitrate and nitrate reductase activity both declined during incubation with water, irrespective of light treatment. Nitrate enrichment of intact terminal buds and uptake into excised buds and increases in nitrate reductase activity were all red/far red reversible. Dimethyl sulfoxide (1%, v/v) and sugars (sucrose 0.5%, glucose 1, w/v), although stimulating nitrate uptake into excised tissue in darkness, failed to enhance nitrate reductase activity over dark controls. Phytochrome may regulate nitrate reductase via both nitrate movement and a general mechanism such as enhancement of protein synthesis.  相似文献   

3.
The importance of light to the induction of nitrate reductase activity in barley (Hordeum vulgare L.) was studied. Activity in etiolated leaves in darkness stayed at a low endogenous level even while large amounts of nitrate were actively accumulated. Light was required for any increase in activity, though the requirement may be satisfied to a limited extent before nitrate is available. Nitrate reductase activity was induced in the dark in green leaves which had not previously had nitrate but were supplied nitrate at the beginning of the dark period. If the nitrate then made available was sufficient, nitrate reductase activity increased until the effect of the previous light treatment was exhausted. Activity then decreased even though nitrate uptake continued. Upon returning the leaves to light, enzymatic activity increased again, as expected. Nitrate uptake was eliminated as an experimental variable by giving dark-grown plants nitrate, then detaching the leaves for induction studies. Under these conditions light saturation occurred between 3600 and 7700 lux at exemplary periods of illumination. At intensities of 3600 lux and above, activity increased sharply after a 6-hour lag period. As light intensity was decreased below 3600 lux the lag period became longer. Thus, when sufficient nitrate was available, the extent of induction of nitrate reductase activity was regulated by light.  相似文献   

4.
Levels of nitrate reductase (NR) protein in Hansenula anomala and Hansenula wingei were determined using specific antiserum raised against the enzyme from H. anomala. Extracts from nitrate-grown cells contained NR protein, while in those from cells grown on ammonium, glutamine or peptone, no cross-reacting material could be observed. Enzyme activity correlated with the levels of cross-reacting material. When nitrate was used as nitrogen source, NR was always present, even in cultures with ammonium, glutamine or peptone, although in these cases both the levels of activity and protein were lower. NR activity was consistently two to four times higher in cells grown in glucose than in cells grown in ethanol. Nitrate was required for NR induction, and deprivation of nitrate from nitrate-grown cells resulted in a rapid loss of NR activity.  相似文献   

5.
Some characteristics of nitrate reductase induction in Lemna minor L.   总被引:1,自引:0,他引:1  
Summary Low levels of nitrate reductase can be detected in plants of Lemna minor grown on some organic nitrogen sources. Nitrogen-starvation does not lead to a derepression of nitrate reductase activity. Nitrate ions are necessary for the development of maximum enzyme activity and the maintenance of high enzyme levels. Nitrogen-starvation of ammonia-grown plants increases the subsequent rate of nitrate-mediated induction. It is suggested that ammonium ions, either directly or indirectly modulate the rate of nitrate reductase induction. The pattern of control regulating nitrate reductase levels in Lemna is contrasted with that in some species of algae.  相似文献   

6.
The relation between leaf age and the induction of nitrate reductase activity by continuous and intermittent light was studied with barley seedlings (Hordeum vulgare L. cv. Club Mariout). In general, nitrate reductase activity declined as the period of growth in darkness was extended beyond 5 days. Maximum activity was found near the leaf tip while activity was lowest in the morphologically youngest tissue near the base of the lamina. Increased activity was observed after continuous illumination of dark-grown seedlings for 24 hours. The increase in activity in response to light was greatly reduced when the dark pretreatment period was extended beyond 8 days. The amount of nitrate reductase activity present in the different sections of the leaf was closely related to the amount of polyribosomes present. The pattern of chlorophyll accumulation closely parallelled that of increases in nitrate reductase activity. The initial lag in the induction of nitrate reductase activity was removed by a 10-minute light treatment 6 hours before placing dark-grown barley seedlings in light. The enzyme was also induced under flashing light with various dark intervals. These induction curves closely resembled those of chlorophyll accumulation under the same conditions. The development of photosynthetic CO2 fixation follows the same induction pattern in this system. Our results suggest that photosynthetic products may be required for the induction of significant levels of nitrate reductase activity in leaves of dark-grown seedlings, although other light effects may not be discounted.  相似文献   

7.
Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.  相似文献   

8.
Nitrate reductase activity, assayed either in vivo or in vitro was considerably higher in bean (Phaseolus vulgaris L.) leaves from 7-day-old light grown seedlings than those from dark grown, both in the absence as well as presence of nitrate. Cytochrome c reductase activity was however similar in both regimes, while peroxidase was lower in light than in dark. The light stimulated increase in nitrate reductase activity in leaf segments from dark grown seedlings was inhibited by cycloheximide, DNP, chloramphenicol, and sodium tungstate and was unaffected by lincomycin and DCMU. Under similar conditions, the increase in total chlorophyll was inhibited completely by cycloheximide and DNP, partially by chloramphenicol and lincomycin, and was unaffected by tungstate and DCMU. A supply of 1~5 mm reduced glutathione increased enzyme activity in the dark and also to some extent in light. The substrate induction of enzyme activity started after a lag of one hr in light or dark and continued for either 5 hr in the dark or 8 hr in light. Two proteinaceous inhibitors (Factors I and II) of nitrate reductase were isolated by ammonium sulfate precipitation and Sephadex gel filtration. The amount of Factor I was higher in the dark than in light. The amount and activity of Factor II was however, almost equal in light and dark. The inhibition of enzyme activity by these inhibitors increased with their concentration. It is proposed that light increases nitrate reductase activity by decreasing the amount of a nitrate reductase inhibitor.  相似文献   

9.
A study was done to relate the in vivo reduction of nitrate to nitrate uptake, nitrate accumulation, and induction of nitrate reductase activity in intact barley seedlings (Hordeum vulgare L. var. `Numar'). The characteristics of nitrate uptake in response to both time and ambient concentration of nitrate regulated reduction and accumulation. Uptake, accumulation, and in vivo reduction achieved steady state rates in 3 to 4 hours, whereas extractable (in vitro) nitrate reductase activity was still increasing at 12 hours. In vivo reduction of nitrate was better correlated exponentially than linearly over time with in vitro activity of nitrate reductase. A similar relationship occurred over increasing concentration of nitrate in the ambient solution. The results suggest that the rate of in vivo reduction of nitrate in barley seedlings may be regulated by the rate of uptake at the ambient concentrations of nitrate employed in the study.  相似文献   

10.
Soybean (Glycine max [L.] Merr.) seeds were imbibed and germinated with or without NO3, tungstate, and norflurazon (San 9789). Norflurazon is a herbicide which causes photobleaching of chlorophyll by inhibiting carotenoid synthesis and which impairs normal chloroplast development. After 3 days in the dark, seedlings were placed in white light to induce extractable nitrate reductase activity. The induction of maximal nitrate reductase activity in greening cotyledons did not require NO3 and was not inhibited by tungstate. Induction of nitrate reductase activity in norflurazon-treated cotyledons had an absolute requirement for NO3 and was completely inhibited by tungstate. Nitrate was not detected in seeds or seedlings which had not been treated with NO3. The optimum pH for cotyledon nitrate reductase activity from norflurazon-treated seedlings was at pH 7.5, and near that for root nitrate reductase activity, whereas the optimum pH for nitrate reductase activity from greening cotyledons was pH 6.5. Induction of root nitrate reductase activity was also inhibited by tungstate and was dependent on the presence of NO3, further indicating that the isoform of nitrate reductase induced in norflurazon-treated cotyledons is the same or similar to that found in roots. Nitrate reductases with and without a NO3 requirement for light induction appear to be present in developing leaves. In vivo kinetics (light induction and dark decay rates) and in vitro kinetics (Arrhenius energies of activation and NADH:NADPH specificities) of nitrate reductases with and without a NO3 requirement for induction were quite different. Km values for NO3 were identical for both nitrate reductases.  相似文献   

11.
Substrate induction of nitrate reductase in barley aleurone layers   总被引:5,自引:5,他引:5       下载免费PDF全文
Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of α-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce α-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of α-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.  相似文献   

12.
Nitrate and nitrite reductases were both induced by adding three concentrations of nitrate to the nutrient supply of nitrate-starved barley seedlings. Enzyme induction was not proportional to the amount of nitrate introduced. Glutamine synthetase also increased above a high endogenous activity but the increase did not differ significantly between any of the three nitrate treatments. Nitrate accumulated rapidly in leaves of plants given 4.0 mM or 0.5 mM nitrate but not with 0.1 mM nitrate. In all treatments, amino acids in leaves increased for 2 d, chiefly attributable to glutamine, then declined. Transferring plants from the three nitrate treatments to nitrate-free nutrient produced an immediate decline in nitrate reductase but nitrite reductase continued to increase for 2 d, before declining. Glutamine-synthetase activity was not affected by withdrawal of nitrate, nor did nitrate withdrawal retard plant growth during the 9-d period of the experiment. The disparity between accumulated nitrate and nitrate-reducing capacity and the rapid decrease in leaf nitrate when nutrient nitrate supply was removed, indicated the presence of a nitrate-storage pool that could be called upon to maintain amino-acid production in times of nitrogen starvation.Abbreviations GS glutamine synthetase - NR nitrate reductase - NiR nitrite reductase  相似文献   

13.
Heating intact leaves of 14–15-day-old seedlings of wheat (Triticum aestivumL.), cv. Albidum 29, for 10 min at 44–45°C brought about a decrease in nitrate reductase activity by 50–90% of the initial level. The complete recovery of the enzyme activity occurred one to two days after the plants were returned to normal temperature conditions. Darkening plants or adding cycloheximide to the nutrient medium did not interfere with the recovery of nitrate reductase activity. The plants grown in darkness or on a nitrate-free medium were devoid of nitrate reductase activity. The transfer of these plants to the light or the addition of nitrate resulted in the induction of enzyme activity. In the untreated plants, nitrate reductase activity attained the control level in 48 h; in the heated plants, this process was considerably retarded. After heating, the activity of the preexisting enzyme recovered at a higher rate than the ability for enzyme induction. This means that the reactivation of nitrate reductase occurred even when the induction of the enzyme was almost entirely suppressed. We conclude that after the short-term effect of high temperatures, the functional activity of nitrate reductase may recover without the de novosynthesis of the enzyme protein.  相似文献   

14.
Determination of Nitrate Reductase Activity in Barley Leaves and Roots   总被引:4,自引:0,他引:4  
The inactivation of nitrate reductase in the leaves and rootsof barley (Hordeum vulgare L. cv. Mazurka) during and afterextracting was investigated. At 0 °C in the absence of casein,25 per cent of ‘total’. i.e. maximal in vitro, nitratereductase activity was lost during the 2 min extraction process,followed by a slower loss of activity while the extract wasstored in ice. Activity was maintained by adding a minimum of1 per cent casein to the extraction medium containing 0·1M phosphate (pH 7·5), 1 mM EDTA and 1 mM dithiothreitol.Nitrate reductase was stable for several hours in these extracts,but declined in a first order manner in the absence of dithiothreitol.Casein also prevented the initial loss while making root extracts,but had less effect during storage. Using casein and thiols, nitrate reductase activity in light,(as product of maximal in vitro rates and wt g–1) in leaveswas 98 per cent of the total activity in 31-day-old plants grownwith full nutrient in water culture and 60-day-old field-grownplants receiving no fertilizer. Field-grown plants, however,exhibited only 17 per cent of the activity of culture-grownplants. Nitrate reductase in leaves of barley plants grown in waterculture had a diurnal rhythm. During the first 3 h of the lightperiod, activity increased to 1·3 x the ‘dark’value. This was followed by a temporary decrease and then byanother increase to a maximum of 1·7 x the ‘dark’value, occurring about 8 h after illumination. Activity thendecreased during the rest of the light period and in darkness. Hordeum vulgare L., barley, nitrate reductase  相似文献   

15.
The photosynthetic purple non-sulfur nitrate-assimilating bacteriumRhodobacter capsulatus E1F1 has an adaptive nitrate reductase activity inducible by either nitrate or nitrite and molybdenum traces. Nitrate reductase induction by nitrate did not occur in media with nitrate and ammonium, which showed no effect if nitrite was the inductor instead of nitrate or in the presence ofl-methionine-dl-sulfoximine (MSX) plus nitrate. In vivo, tungstate inhibited nitrate reductase activity, and this was not recovered upon addition of molybdenum unless de novo protein synthesis took place. Nitrate reductase was also repressed in nitrogen-starved cells or after the addition of azaserine to cells growing phototrophically with nitrate. Moreover, higher rates of nitrate reductase induction and nitrite excretion were found in illuminated cells grown with nitrate under air than in those grown under argon.  相似文献   

16.
Nitrate is one of the most important stimuli in nitrate reductase (NR) induction, while ammonium is usually an inhibitor. We evaluated the influence of nitrate, ammonium or urea as nitrogen sources on NR activity of the agarophyte Gracilaria chilensis. The addition of nitrate rapidly (2 min) induced NR activity, suggesting a fast post-translational regulation. In contrast, nitrate addition to starved algae stimulated rapid nitrate uptake without a concomitant induction of NR activity. These results show that in the absence of nitrate, NR activity is negatively affected, while the nitrate uptake system is active and ready to operate as soon as nitrate is available in the external medium, indicating that nitrate uptake and assimilation are differentially regulated. The addition of ammonium or urea as nitrogen sources stimulated NR activity after 24 h, different from that observed for other algae. However, a decrease in NR activity was observed after the third day under ammonium or urea. During the dark phase, G. chilensis NR activity was low when compared to the light phase. A light pulse of 15 min during the dark phase induced NR activity 1.5-fold suggesting also fast post-translational regulation. Nitrate reductase regulation by phosphorylation and dephosphorylation, and by protein synthesis and degradation, were evaluated using inhibitors. The results obtained for G. chilensis show a post-translational regulation as a rapid response mechanism by phosphorylation and dephosphorylation, and a slower mechanism by regulation of RNA synthesis coupled to de novo NR protein synthesis.  相似文献   

17.
Silene alba cells grown on nitrate, usually develop NADH-nitrate reductase activity only at the beginning of their growth cycle. Immunodiffusion assays, with a specific nitrate reductase antiserum, revealed the presence of cross-reacting material in cells harvested at any time during their culture. Cells grown on ammonium lacked NADH-nitrate reductase activity but contained cross-reacting material. It is suggested that S. alba cells contain an enzymically inactive, antigenic form of nitrate reductase regardless of the nitrogen source.  相似文献   

18.
Nitrate reductase from wheat (Triticum aestivum L. cv Bindawarra) leaves is inactivated by pretreatment with NADH, in the absence of nitrate, a 50% loss of activity occurring in 30 minutes at 25°C with 10 micromolar NADH. Nitrate (50 micromolar) prevented inactivation by 10 micromolar NADH while cyanide (1 micromolar) markedly enhanced the degree of inactivation.

A rapid reactivation of NADH-inactivated nitrate reductase occurred after treatment with 0.3 millimolar ferricyanide or exposure to light (230 milliwatts per square centimeter) plus 20 micromolar flavin adenine dinucleotide. When excess NADH was removed, the enzyme was also reactivated by autoxidation. Nitrate did not influence the rate of reactivation.

Leaf nitrate reductase, from plants grown for 12 days on 1 millimolar nitrate, isolated in the late photoperiod or dark period, was activated by ferricyanide or light treatment. This suggests that, at these times of the day, the nitrate reductase in the leaves of the low nitrate plants is in a partially inactive state (NADH-inactivated). The nitrate reductase from moisture-stressed plants showed a greater degree of activation after light treatment, and inactive enzyme in them was detected earlier in the photoperiod.

  相似文献   

19.
Summary Three plants, R9201 and R11301 (from cv. Maris Mink) and R12202 (from cv. Golden Promise), were selected by screening M2 populations of barley (Hordeum vulgare L.) seedlings (mutagenised with azide in the M1) for resistance to 10 mM potassium chlorate. Selections R9201 and R11301 were crossed with the wild-type cv. Maris Mink and analysis of the F2 progeny showed that one quarter lacked shoot nitrate reductase activity. These F2 plants also withered and died in the continuous presence of nitrate as sole nitrogen source. Loss of nitrate reductase activity and withering and death were due in each case to a recessive mutation in a single nuclear gene. All F1 progeny derived from selfing selection R12202 lacked shoot nitrate reductase activity and also withered and subsequently died when maintained in the continuous presence of nitrate as sole nitrogen source. All homozygous mutant plants lacked not only shoot nitrate reductase activity but also shoot xanthine dehydrogenase activity. The plants took up nitrate, and possessed wild-type or higher levels of shoot nitrite reductase activity and NADH-cytochrome c reductase activity when treated with nitrate for 18 h. We conclude that loss of shoot nitrate reductase activity, xanthine dehydrogenase activity and withering and death, in the three mutants R9201, R11301 and R12202 is due to a mutation affecting the formation of a functional molybdenum cofactor. The mutants possessed wild-type levels of molybdenum and growth in the presence of unphysiologically high levels of molybdate did not restore shoot nitrate reductase or xanthine dehydrogenase activity. The shoot molybdenum cofactor of R9201 and of R12202 is unable to reconstitute NADPH nitrate reductase activity from extracts of the Neurospora crassa nit-1 mutant and dimerise the nitrate reductase subunits present in the respective barley mutant. The shoot molybdenum cofactor of R11301 is able to effect dimerisation of the R11301 nitrate reductase subunits and can reconstitute NADPH-nitrate reductase activity up to 40% of the wild-type molybdenum cofactor levels. The molybdenum cofactor of the roots of R9201 and R11301 is also defective. Genetic analysis demonstrated that R9201, but not R11301, is allelic to R9401 and Az34 (nar-2a), two mutants previously shown to be defective in synthesis of molybdenum cofactor. The mutations in R9401 and R9201 gave partial complementation of the nar-2a gene such that heterozygotes had higher levels of extractable nitrate reductase activity than the homozygous mutants.We conclude that: (a) the nar-2 gene locus encodes a step in molybdopterin biosynthesis; (b) the mutant R11301 represents a further locus involved in the synthesis of a functional molybdenum cofactor; (c) mutant Rl2202 is also defective in molybdopterin biosynthesis; and (d) the nar-2 gene locus and the gene locus defined by R11301 govern molybdenum cofactor biosynthesis in both shoot and root.  相似文献   

20.
Smirnoff, N., Winslow, M. D. and Stewart, G. R. 1985. Nitratereductase activity in leaves of barley (Hordeum vulgare) anddurum wheat (Triticum durum) during field and rapidly appliedwater deficits.-J. exp. Bot 36: 1200-1208. The effect of field and rapidly applied water deficits on nitratereductase activity in the leaves of two barley varieties andone durum wheat variety was investigated. In field experimentsplants were subjected to irrigation at different rates in threeMediterranean environments by means of a line source sprinklerirrigation system. The environments differed in rainfall andnitrogen fertility. Plant water potentials decreased from –1.5MPa to between –2.5 and –3.0 MPa as the irrigationrate decreased. Nitrate reductase activity in the leaves ofthese plants during heading was either unaffected or sometimesincreased where the least water was supplied. Nitrate reductaseactivity was highest in the plants growing with an ample nitrogensupply irrespective of water regime. In contrast, seedlingssubject to rapidly applied water stress over 6 d lost 30-85%of their nitrate reductase activity when leaf water potentialfell from between –0.33 and –0.75 MPa to between–O.93 and –2.04 MPa. The decrease was less in theyoung leaves than in the old leaves. Polyethylene glycol inducedosmotic stress resulted in a drop in leaf water potential from–0.20 MPa to between –1.05 and –1.20 MPa alongwith a loss of 40-85% of leaf nitrate reductase activity after48 h. It is suggested that maintenance of nitrate reductase activityin field grown barley and durum wheat plants reflects an acclimationto water deficit Maintenance of nitrate assimilation duringwater stress may allow continued synthesis of nitrogenous compatiblesolutes using the excess photochemical energy available duringstomatal closure. Key words: Nitrate reductase, water stress, barley, durum wheat  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号