首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transformation of bacteria with plasmid DNA by electroporation   总被引:20,自引:0,他引:20  
The possibility of electric field-mediated transformation ("electroporation") of a gram-positive bacterium (Enterococcus faecalis) and two gram-negative bacteria (Escherichia coli and Pseudomonas putida) with plasmid DNA was investigated. E. faecalis protoplasts could be transformed by electroporation with a transformation frequency of 10(4) to 10(5) transformants/micrograms plasmid. Untreated--i.e., washed--cells of E. coli could be transformed with rates of 1 X 10(5) transformants/micrograms plasmid DNA. Transformation rates for P. putida cells were up to 3 X 10(4) if the method developed for E. coli was used. Detailed protocols for these systems, including the results of various optimization experiments, are given.  相似文献   

2.
Two techniques, electroporation and conjugation, have been used to introduce the RK2-based broad-host-range plasmids pRK415 and pLAFR3 into strains of the bacterial genus Acidiphilium. Using electroporation, cells were also transformed with a series of chimeric plasmids constructed by cloning cryptic Acidiphilium plasmids into the Escherichia coli vector pBR328. Various parameters affecting electroporation were investigated. Transformation efficiency varied widely with different recipient strains. Growth at an elevated temperature (37 degrees C) prior to electroporation increased transformation efficiency 10-fold compared with growth at 32 degrees C. For three strains tested, optimum transformation efficiency was obtained with field strengths of 10-15 kV/cm. Transformation efficiency increased linearly with increasing DNA concentration up to 10 micrograms/mL. Transformation efficiencies in these experiments ranged up to 10(4) transformants/micrograms DNA. Mobilization of pRK415 and pLAFR3 from E. coli strain S17.1 into several Acidiphilium strains was achieved following incubation for 3 h on nutrient agar medium (pH 7.0). Conjugation frequencies in the range of 10(-5)-10(-9) per recipient cell were obtained. Conjugation frequency was also dependent on recipient strain.  相似文献   

3.
4.
A bacteriophage-plasmid hybrid (phagemid) designated pCAK1 was constructed by ligating 5-kbp Escherichia coli plasmid pAK102 (AprEmr) and the 6.6-kbp HaeIII-linearized replicative form of the CAK1 viruslike particle from Clostridium acetobutylicum NCIB 6444. Phagemid pCAK1 (11.6 kbp) replicated via the ColE1 replication origin derived from pAK102 in E. coli. Single-stranded DNA (ssDNA) molecules complexed with protein in a manner which protected ssDNA from nucleases were recovered from the supernatant of E. coli DH11S transformants containing pCAK1 in the absence of cell lysis. This suggests that the viral-strand DNA synthesis replication origin of CAK1 and associated gene expression are functional in E. coli DH11S. The single-stranded form of pCAK1 isolated from E. coli supernatant was transformed into E. coli DH5 alpha' or DH11S by electroporation. Isolation of ampicillin-resistant E. coli transformants following transformation suggests that the complementary-strand DNA synthesis replication origin of CAK1 is also functional in E. coli. The coat proteins associated with ssDNA of pCAK1 demonstrated sensitivity to proteinase K and various solvents (i.e., phenol and chloroform), similar to the results obtained previously with CAK1. Following phagemid construction in E. coli, pCAK1 was transformed into C. acetobutylicum ATCC 824 and C. perfringens 13 by intact cell electroporation. Restriction enzyme analysis of pCAK1 isolated from erythromycin-resistant transformants of both C. acetobutylicum and C. perfringens suggested that it was identical to that present in E. coli transformants.  相似文献   

5.
High efficiency electroporation of intact Corynebacterium glutamicum cells   总被引:16,自引:0,他引:16  
High-frequency electroporation of whole Corynebacterium glutamicum cells without enzymatic pretreatment was achieved. Under optimized conditions concerning growth stage, washing of cells, cell concentration and pulse parameter transformation efficiencies of far more than 10(7) transformants per microgram pWST4B plasmid DNA were reached. Using electroporation, linearised and subsequently religated plasmid as well as chimeric ligase reaction products were directly introduced into C. glutamicum with reasonable efficiencies. Electrotransformation efficiency was reduced about 10(5)-fold for plasmid DNA cycled through E. coli JM83. Restriction deficient mutants of C. glutamicum were isolated which could be efficiently transformed with foreign DNA.  相似文献   

6.
High efficiency transformation of E. coli by high voltage electroporation.   总被引:325,自引:32,他引:293       下载免费PDF全文
E. coli can be transformed to extremely high efficiencies by subjecting a mixture of cells and DNA to brief but intense electrical fields of exponential decay waveform (electroporation). We have obtained 10(9) to 10(10) transformants/micrograms with strains LE392 and DH5 alpha, and plasmids pUC18 and pBR329. The process is highly dependent on two characteristics of the electrical pulse: the electric field strength and the pulse length (RC time constant). The frequency of transformation is a linear function of the DNA concentration over at least six orders of magnitude; and the efficiency of transformation is a function of the cell concentration. Most of the surviving cells are competent with up to 80% transformed at high DNA concentration. The mechanism does not appear to include binding of the DNA to the cells prior to entry. Possible mechanisms are discussed and a simple procedure for the practical use of this technique is presented.  相似文献   

7.
Daughter strand gaps are secondary lesions caused by interrupted DNA synthesis in the proximity of UV-induced pyrimidine dimers. The relative roles of DNA recombination and de novo DNA synthesis in filling such gaps have not been clarified, although both are required for complete closure. In this study, the Escherichia coli E486 and E511 dnaE(Ts) mutants, in which DNA polymerase I but not DNA polymerase III is active at 43 degrees C, were examined. Both mutants demonstrated reduced gap closure in comparison with the progenitor strain at the nonpermissive temperature. These results and those of previous studies support the hypothesis that both DNA polymerase I and DNA polymerase III contribute to gap closure, suggesting a cooperative effort in the repair of each gap. Benzoylated, naphthoylated diethylaminoethyl-cellulose chromatography analysis for persistence of single-strand DNA in the absence of DNA polymerase III activity suggested that de novo DNA synthesis initiates the filling of daughter strand gaps.  相似文献   

8.
AIMS: The study was conducted with an aim to optimize the transformation efficiency of the Gram-positive bacterium Staphylococcus carnosus to a level that would enable the creation of cell surface displayed combinatorial protein libraries. METHODS AND RESULTS: We have thoroughly investigated a number of different parameters for: (i) the preparation of electrocompetent cells; (ii) the treatment of cells before electroporation; (iii) the electroporation step itself; and (iv) improved recovery of transformed cells. Furthermore, a method for heat-induced inactivation of the host cell restriction system was devised to allow efficient transformation of the staphylococci with DNA prepared from other species, such as Escherichia coli. Previously described protocols for S. carnosus, giving transformation frequencies of approximately 10(2) transformants per transformation could be improved to reproducible procedures giving around 10(6) transformants for a single electroporation event, using plasmid DNA prepared from either S. carnosus or E. coli. The transformed staphylococcal cells were analysed using flow cytometry to verify that the entire cell population retained the introduced plasmid DNA and expressed the recombinant protein in a functional form on the cell surface at the same level as the positive control population. CONCLUSIONS: The results demonstrate that the transformation frequency for S. carnosus could be dramatically increased through optimization of the entire electroporation process, and that the restriction barrier for interspecies DNA transfer, could be inactivated by heat treatment of the cells prior to electroporation. SIGNIFICANCE AND IMPACT OF THE STUDY: The generation of large combinatorial protein libraries, displayed on the surface of S. carnosus can be envisioned in the near future, thus dramatically improving the selection compared with the traditional biopanning procedure used in phage display.  相似文献   

9.
近年来,利用重组病毒对T细胞进行基因编辑用于免疫治疗,受到了广泛重视。然而,重组病毒因存在随机整合,制备耗时长且昂贵的缺点制约了其应用。与此同时,电转染技术的应用能够快速将外源DNA带入细胞内,有助于提高T细胞基因编辑效率。TET(Ten-eleven translocation)家族蛋白可以催化5-甲基胞嘧啶(5mC)转化为5-羟甲基胞嘧啶(5hmC),5hmC作为细胞中的DNA去甲基化酶,在细胞基因组表观遗传学中起着重要调控作用。研究表明TET2基因的缺失能够促进CAR-T细胞的快速繁殖,产生强力的CAR-T细胞。该研究利用CRISPR/Cas9基因编辑技术对TET2基因进行敲除。首先对sgRNA进行体外转录,与大肠杆菌诱导表达的Cas9蛋白孵育形成Cas9:gRNA核糖核蛋白复合物(RNP),并在体外酶切验证sgRNA的活性。接着利用电转染技术将Cas9:gRNA核糖核蛋白复合物(RNP)带入细胞内,并检测T细胞基因编辑效率。最后利用流式细胞分析技术检测T细胞的增殖情况。基因测序与T7EⅠ酶切结果表明,T细胞中的TET2基因被成功敲除,T细胞活力和功能并未受到影响。流式细胞技术,CCK-8以及台盼蓝细胞活率检测结果显示缺失Tet2蛋白后,T细胞的增殖速率明显快于野生型T细胞。该研究为非病毒载体替代传统的慢病毒载体构建携带嵌合抗原T细胞奠定了基础,具有制备周期短,安全性高的特点。同时TET2缺失促进了CAR-T细胞的增殖,使其能够引发有效的抗肿瘤反应,为CAR-T细胞免疫治疗提供了新的思路。  相似文献   

10.
UV mutagenesis of single-strand DNA phage can be divided into three types: induced untargeted; induced targeted; and uninduced targeted. We report the development of new tools to determine the number of processes which contribute to these types of mutagenesis. An E. coli tRNA gene, glyU, has been cloned using M13 derivatives mp8 and mp9 as vectors. The nucleotide sequence of glyU and its flanking regions is presented. In this paper, phage glyU anticodon mutants are detected by their ability to suppress GAA and GAT missense mutations in trpA. We used phage carrying GAG and CTC at the anticodon position and found results consistent with the hypothesis that two processes act to produce the transition to GAA suppression: an uninduced regionally targeted process; and an induced locally targeted process with some untargeted activity. The transversion frequency to GAT suppression on the other hand responded as if only an uninduced locally targeted process was involved. Thus, we hypothesize that the new tools have discriminated three different processes of mutagenesis and we discuss further work designed to test this hypothesis.  相似文献   

11.
The inactivation efficiency and repair of single-strand breaks was investigated using model strand breaks created by endonucleolytic incision of damaged DNA. Phi X-174 duplex transfecting DNA containing either thymine glycols, urea residues, or abasic (AP) sites was incubated with AP endonucleases that produce breaks on the 3' side, the 5' side, or both sides of the lesion. For each lesion, incubation with Escherichia coli endonuclease III results in a single-strand break containing a 3' alpha, beta-unsaturated aldehyde (4-hydroxy-2-pentenal), while treatment of AP- or urea-containing DNA with E. coli endonuclease IV results in a single-strand break containing a 5' deoxyribose or a 5' deoxyribosylurea moiety, respectively. Incubation of lesion-containing DNA with both enzymes results in a base gap. Ligatable nicks containing 3' hydroxyl and 5' phosphate moieties were produced by subjecting undamaged DNA to DNase I. When the biological activity of these DNAs was assessed in wild-type cells, ligatable nicks were not lethal, but each of the other strand breaks tested was lethal, having inactivation efficiencies between 0.12 and 0.14. These inactivation efficiencies are similar to those of the base lesions from which the strand breaks were derived. In keeping with the current model of base excision repair, when phi X duplex DNA containing strand breaks with a blocked 3' terminus was transfected into an E. coli double mutant lacking the major 5' cellular AP endonucleases, a greater than twofold decrease in survival was observed. Moreover, when this DNA was treated with a 5' AP endonuclease prior to transfection, the survival returned to that of wild type. As expected, when DNA containing strand breaks with a 5' blocked terminus or DNA containing base gaps was transfected into the double mutant lacking 5' AP endonucleases, the survival was the same as in wild-type cells. The decreased survival of transfecting DNA containing thymine glycols, urea, or AP sites observed in appropriate base excision repair-defective mutants was also obviated if the DNA was incubated with the homologous enzyme prior to transfection. Thus, in every case, with both base lesions and single-strand breaks, the lesion was repaired in the cell by the enzyme that recognizes it in vitro. Furthermore, the repair step in the cell could be eliminated if the appropriate enzyme was added in vitro prior to transfection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Escherichia coli C cells, unifilarly substituted with 5-bromouracil (BrUra) were 2-25 times as sensitive as unsubstituted cells to killing by gamma-irradiation under aerobic conditions. The yield of DNA double-strand breaks in BrUra-substituted cells was increased by a factor only 1-55, suggesting that other lesions also contribute to cell-killing. Alkaline sucrose density gradient analysis of the 3H-thymine labelled DNA strand showed there was less repair of gamma-ray-induced single-strand breaks when BrUra was in the complementary strand. Since there are more of these unrepaired breaks than can be accounted for by BrUra-induced DNA double-strand breakage, some fraction of the lethal events in BrUra-substituted E. coli cells may be unrepaired DNA single-strand breaks.  相似文献   

13.
Intact cells of Bradyrhizobium japonicum USDA 110 were transformed with a 30-kilobase plasmid to efficiencies of 10(6) to 10(7) transformants per microgram by high-voltage electroporation. The technique was reliable and simple, with single colonies arising from transformed cells within 5 days of antibiotic selection. Plasmid DNA from B. japonicum transformed the Bradyrhizobium (Arachis) sp. with high efficiency, while the same plasmid extracted from Escherichia coli transformed B. japonicum at very low efficiency. The electrical conditions that resulted in the highest efficiencies were high voltage (10.5 to 12.5 kV/cm) and short pulse length (6 to 7 ms). A linear increase in the number of transformants was observed as DNA concentration was increased over 4 orders of magnitude; saturation appeared to begin between 120 ng/ml and 1.2 micrograms/ml. This novel method of transformation should enhance B. japonicum genetic research by providing a valuable alternative to conjugal mating, which is currently the only efficient, widely used means of introducing DNA into this organism.  相似文献   

14.
Intact cells of Bradyrhizobium japonicum USDA 110 were transformed with a 30-kilobase plasmid to efficiencies of 10(6) to 10(7) transformants per microgram by high-voltage electroporation. The technique was reliable and simple, with single colonies arising from transformed cells within 5 days of antibiotic selection. Plasmid DNA from B. japonicum transformed the Bradyrhizobium (Arachis) sp. with high efficiency, while the same plasmid extracted from Escherichia coli transformed B. japonicum at very low efficiency. The electrical conditions that resulted in the highest efficiencies were high voltage (10.5 to 12.5 kV/cm) and short pulse length (6 to 7 ms). A linear increase in the number of transformants was observed as DNA concentration was increased over 4 orders of magnitude; saturation appeared to begin between 120 ng/ml and 1.2 micrograms/ml. This novel method of transformation should enhance B. japonicum genetic research by providing a valuable alternative to conjugal mating, which is currently the only efficient, widely used means of introducing DNA into this organism.  相似文献   

15.
将猪瘟病毒的E2基因克隆入酵母分泌型表达载体pPIC9K中,酶切线性化后电穿孔导入Pichia pastoris进行整合,经G418筛选得到高拷贝转化子,甲醇诱导表达。SDS-PAGE和Western blit结果证实了酵母培养上清液中含有E2蛋白。免疫活性研究证明P.pastoris表达的E2蛋白能刺激动物产生抗猪瘟病毒的抗体。  相似文献   

16.
Suspension cultures of small cell groups (SCG; ca. 50–100 cells per group) were established from calli of Japonica rice Fang 7 and Hl24. The SCG were partially digested and transformed by plasmid pBll21 harboring the NPT-II (neomycin phosphotransferase) and GUS (betaglucuronidase) genes. Plasmid DNA was introduced into cells' by PEG, electroporation and PEG plus electroporation. NTP-II and GUS activity assay showed that the report genes were expressed in transformed cells. Transgenic plants were regeneiated possessing GUS activity due to the integration of intact foreign DNA into their genome as evidanced by hybridization. The results prove that the partially digested SCG is a potential, feasible system as receptor for gene transfer, especially for plants which are difficult for protoplast culture and plant regeneration from protoplasts.  相似文献   

17.
Transformation of Bacillus thuringiensis by electroporation   总被引:8,自引:0,他引:8  
Plasmids were transformed by electroporation into various strains of Bacillus thuringiensis with frequencies of up to 10(5) transformants/micrograms. pC 194 transformed all strains tested at a high frequency and cells could be stably transformed with pC194 and pUB110 simultaneously by electroporation with a frequency of 10(2) pC194+ pUB110 transformants/micrograms DNA. Low transformation frequencies observed with some plasmids, especially those grown initially in Escherichia coli, could be increased by passage through B. thuringiensis, B. thuringiensis var. israelensis and in acrystalliferous mutant of the same strain transformed at frequencies of 10(4)-10(5)/micrograms DNA with most of the plasmids tested. A cloned israelensis 27-kDa delta-endotoxin gene was introduced into the israelensis acrystalliferous mutant and a kurstaki acrystalliferous mutant by electroporation. Both transformants were shown to express the endotoxin gene and to be toxic to Aedes aegypti larvae.  相似文献   

18.
Viswanathan M  Lanjuin A  Lovett ST 《Genetics》1999,151(3):929-934
There are three known single-strand DNA-specific exonucleases in Escherichia coli: RecJ, exonuclease I (ExoI), and exonuclease VII (ExoVII). E. coli that are deficient in all three exonucleases are abnormally sensitive to UV irradiation, most likely because of their inability to repair lesions that block replication. We have performed an iterative screen to uncover genes capable of ameliorating the UV repair defect of xonA (ExoI-) xseA (ExoVII-) recJ triple mutants. In this screen, exonuclease-deficient cells were transformed with a high-copy E. coli genomic library and then irradiated; plasmids harvested from surviving cells were used to seed subsequent rounds of transformation and selection. After several rounds of selection, multiple plasmids containing the rnt gene, which encodes RNase T, were found. An rnt plasmid increased the UV resistance of a xonA xseA recJ mutant and uvrA and uvrC mutants; however, it did not alter the survival of xseA recJ or recA mutants. RNase T also has amino acid sequence similarity to other 3' DNA exonucleases, including ExoI. These results suggest that RNase T may possess a 3' DNase activity capable of substituting for ExoI in the recombinational repair of UV-induced lesions.  相似文献   

19.
In mammalian cells, the predominant pathway of chromosomal integration of exogenous DNA is random or illegitimate recombination; integration by homologous recombination is infrequent. Homologous recombination is initiated at double-strand DNA breaks which have been acted on by single-strand exonuclease. To further characterize the relationship between illegitimate and homologous recombination, we have investigated whether illegitimate recombination is also preceded by exonuclease digestion. Heteroduplex DNAs which included strand-specific restriction markers at each of four positions were generated. These DNAs were introduced into mouse embryonic stem cells, and stably transformed clones were isolated and analyzed to determine whether there was any strand bias in the retention of restriction markers with respect to their positions. Some of the mismatches appear to have been resolved by mismatch repair. Very significant strand bias was observed in the retention of restriction markers, and there was polarity of marker retention between adjacent positions. We conclude that DNA is frequently subjected to 5'-->3' exonuclease digestion prior to integration by illegitimate recombination and that the length of DNA removed by exonuclease digestion can be extensive. We also provide evidence which suggests that frequent but less extensive 3'-->5' exonuclease processing also occurs.  相似文献   

20.
Chromosomal DNA was extracted from toxigenic Clostridium butyricum strain BL6340 isolated from a case of infant botulism. After digestion by EcoRI, a DNA fragment of about 1 kbp was cloned into Escherichia coli using lambda gt11, and was subcloned into pUC118. The E. coli cells transformed with this cloned fragment produced a 33 kDa protein which reacted with monoclonal antibodies recognizing the light chain (Lc) component of botulinum type E toxin. The nucleotide sequence of the cloned fragment was determined. The sequence was similar to that from botulinum type E toxin gene fragments previously determined by our laboratory (strains Mashike, Otaru and Iwanai). Several highly homologous sequences among the botulinum type A, C, E, butyricum and tetanus toxin genes were found in both translated and untranslated regions. These results suggest that the toxin gene of C. butyricum may have evolved by transfer from C. botulinum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号