首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为了阐明籼稻(oryza sativa L.spp.indica)、粳稻(O.sativa L.spp.japonica)对低温强光敏感性的差异,着重研究了低温强光下水稻类囊体膜脂不饱和度与叶黄素循环的变化.随着低温强光处理时间的延长,类囊体膜脂不饱和脂肪酸含量降低,饱和脂肪酸含量增加,因而膜脂不饱和指数(IUFA)下降.同时,叶黄素循环的关键酶--紫黄质脱环氧化酶(VDE)活性降低,叶黄素循环组分中紫黄质(V)含量增加,而单环氧玉米黄质(A)和下米黄质(Z)的含量减少,表现为(A+Z)/(A+Z+V)比值下降.Arrhenius分析证明,VDE对低温和膜脂不饱和度都敏感.相关分析表明,类囊体IUFA分别与VDE活性、(A+Z)/(A +Z+V)和D1蛋白量呈显著的正相关.与粳稻9516相比,籼稻油优63类囊体膜的IUFA较低,低温下类囊体膜脂流动性和稳定性较差,VDE活性和(A+Z)/(A+Z+V)比值较低.  相似文献   

2.
研究了温光胁迫下籼(Oryza sativa L. spp. indica)粳稻(O. sativa L. spp. japonica)生育后期叶片荧光参数和膜脂过氧化的关系.结果表明,低温强光下水稻光合机构中PSⅡ的D1蛋白量下降,叶黄素循环组分中环氧玉米黄质(A)和玉米黄质(Z)的形成受抑,PSⅡ光化学效率(Fv/Fm)和非光化学猝灭(qN)明显下降.加之内源活性氧清除剂超氧物歧化酶(SOD)活性降低,超氧阴离子自由基(O(-)/(*)2)和膜脂过氧化产物丙二醛(MDA)积累增加,导致光氧化发生.上述过程在籼粳稻间有明显差异,低温强光结合抑制剂处理证明,籼稻较粳稻对低温强光敏感和光氧化严重.相关分析表明,D1蛋白量分别与Fv/Fm和(A+Z)/(A+Z+V)呈极显著的正相关关系,Fv/Fm与MDA呈极显著的负相关关系.据此认为,逆境下Fv/Fm 是预测光氧化的  相似文献   

3.
研究了温光胁迫下籼 (OryzasativaL .spp .indica)粳稻 (O .sativaL .spp .japonica)生育后期叶片荧光参数和膜脂过氧化的关系。结果表明 ,低温强光下水稻光合机构中PSⅡ的D1蛋白量下降 ,叶黄素循环组分中环氧玉米黄质 (A)和玉米黄质 (Z)的形成受抑 ,PSⅡ光化学效率 (Fv/Fm)和非光化学猝灭 (qN)明显下降。加之内源活性氧清除剂超氧物歧化酶 (SOD)活性降低 ,超氧阴离子自由基 (O-·2 )和膜脂过氧化产物丙二醛 (MDA)积累增加 ,导致光氧化发生。上述过程在籼粳稻间有明显差异 ,低温强光结合抑制剂处理证明 ,籼稻较粳稻对低温强光敏感和光氧化严重。相关分析表明 ,D1蛋白量分别与Fv/Fm 和 (A Z) / (A Z V)呈极显著的正相关关系 ,Fv/Fm 与MDA呈极显著的负相关关系。据此认为 ,逆境下Fv/Fm是预测光氧化的关键指标 ,D1蛋白合成能力和叶黄素循环的保护作用是其生理基础  相似文献   

4.
紫黄质循环是紫黄质(V)经过中间物单环氧玉米黄质(A)形成玉米黄质(Z)的可逆转换,是光合系统聚光复合体在低光下的聚光状态与高光下的能量耗散状态之间的转换开关.叶黄素中的玉米黄质可钝化(去激发)激发三线态叶绿素(3Chl*)和激发单线态氧(1O2*),紫黄质循环可直接或间接地通过非光化学淬灭(NPQ)耗散PSⅡ天线蛋白中的过量光能.天线蛋白被认为是依赖玉米黄质(Z)耗散过量光能的部位,天线蛋白通过结合紫黄质循环组分(V,A和Z)来调节紫黄质循环.类囊体膜脂的性质和结构影响紫黄质循环组分(V,A和Z)间的转换,V的脱环氧化速率依赖于V在类囊体膜脂上侧向扩散的速率,紫黄质脱环氧化作用第一步(由V到A的转换)的速度常数是第二步(由A到Z的转换)速度常数的4~6倍.现有的结果表明,天线蛋白和类囊体膜脂是紫黄质循环最基本的调节器.该文对近年来国内外关于紫黄质循环的基本反应及其功能、紫黄质循环酶结构性质和辅因子以及天线蛋白和类囊体膜脂对紫黄质循环的调节作用及其机理等方面的研究进展进行了综述.  相似文献   

5.
不同温光条件下籼粳稻叶片的光抑制和光氧化表现   总被引:5,自引:0,他引:5  
不同温光条件(4d)下,以粳稻(Dryza sativaL.sp.japonica)“9516”和籼稻(O.sativaL.sp.indica)“汕优63”为材料,测定了与PSⅡ光能转化效率(Fv/Fm)和膜脂过氧化作用有关的生理指标。结果表明:适温、中等光强下两品种Fv/Fm和膜脂过氧化作用的产物(MDA)无变化,未见光抑制和光氧化表现;适温、强化下籼稻“汕优63”的Fv/Fm明显下降,MDA未见变化,有光抑制无光氧化表现;低温、强光下两品种有光抑制和光氧化表现。低温、强光下结合抑制剂实验证明,与粳稻相比,籼稻的D1蛋白量和SOD活性下降较多,叶黄素循环和非光化学猝灭(qN)受抑制程度较大,膜脂过氧化产物MDA含量较高,因而光抑制和光氧化现象较明显。实验提出:光能转化效率和膜脂过氧化表现是预测光氧化的关键指标。  相似文献   

6.
光照下叶黄素循环与非辐射能量耗散的关系   总被引:1,自引:0,他引:1  
离体玉米叶片在光照下叶黄素循环与非辐射能量耗散发生明显变化.随着光强提高,玉米黄质(Z)含量显著上升,单环氧玉米黄质(A)含量在中低光强时增加但在较强光照下略有降低,紫黄质(V)含量则呈下降趋势,但叶黄素循环组分库V+A+Z上升幅度不大;相同条件下非辐射能量耗散增强,表现为非光化学猝灭荧光参数(NPQ)明显上升,同时Fv/Fm下降.分析表明,(Z+0.5A)/(V+A+Z)与NPQ呈明显正相关,而与Fv/Fm呈显著负相关,(V+0.5A)/(V+A+Z)则与之相反.由此推测,离体条件下玉米叶片中Z的环氧化和V的脱环氧化明显与非辐射能量耗散和PSⅡ光能转化过程相关.  相似文献   

7.
阳生植物和阴生植物的叶黄素循环与非辐射能量耗散X   总被引:4,自引:1,他引:3  
自然条件下阳生植物和阴生植物的光合速率存在着明显的差距,它们拥有不同的适应强光胁迫的能力,前者明显强于后者。从叶黄素组分来看,阳生植物拥有更大的叶黄素库[紫黄质(V)+单环环氧玉米黄质(A)+玉米黄质(Z)],其中Z和[Z+A]的含量更明显高于阴生植物;从阳生植物或阴生植物内部来看,不同物种间,Z1[Z+A]和[V+A+Z]含量的差异相对较小,A则基本相同;不论是阳生植物还是阴生植物,非光化学猝灭值与Z、[Z+A]及[V+A+Z]含量均呈现较好的正相关关系,后三者含量越高,非光化学猝灭值越大,而且[V+A+Z]库的大小与Z含量基本上是成比例增另的。说明在不同植物种间,[Z+](主要是Z)仍然是影响非辐射能量耗能的主要因素。  相似文献   

8.
盐诱导的依赖叶黄素循环的热耗散提高了小麦的耐盐性   总被引:1,自引:0,他引:1  
以小麦抗盐品种‘DK961’和盐敏感品种‘LM15’为材料,探讨盐胁迫条件下叶黄素循环与膜脂过氧化的关系。结果表明:200mmol·L-1NaCl处理后二者地上部分鲜重、含水量、K+含量显著下降,Na+含量、Na+/K+比、丙二醛含量显著升高,膜透性显著增大,‘LM15’的变化幅度均明显大于‘DK961’,而‘LM15’脱环氧化状态(A+Z)/(A+Z+V)的增加明显小于‘DK961’。这表明盐胁迫下‘DK961’通过增加依赖叶黄素循环的热耗散减轻了膜脂过氧化,提高其耐盐性。  相似文献   

9.
经叶黄素循环抑制剂——二硫苏糖醇(DIT)处理的茶树叶片,以850μmol.m^-2.s^-1的PFD照射120min后,福鼎大白茶的叶黄素循环组分中的环氧玉米黄素(A)和玉米黄素(Z)含量之和降低了76.5%,结果导致非光化学猝灭(NPQ)、光系统Ⅱ(PSⅡ)的光化学效率(Fv/Fm)、光化学猝灭系数(qP)、PSⅡ实际光化学量子效率(ψPSⅡR)和光合电子传递速率(ETR)明显下降,而F0显著上升,暗恢复后Fv/Fm恢复程度小于未经DIT处理的叶片。自然光强下,NPQ与与叶黄素循环的脱环氧化程度(A Z)/(V A Z)比值呈明显的正线性关系(R=0.9488^***)。这些结果充分证明依赖与叶黄素循环的热耗散是茶树叶片光合器官防御强光破坏的主要途径。  相似文献   

10.
阳成伟  陈贻竹 《广西植物》2002,22(3):264-267
依赖叶黄素循环的热耗散是一种主要防御光破坏的机制。参与叶黄素循环的酶是紫黄质脱环氧化酶和玉米黄质环氧化酶 ,紫黄质脱环氧化酶已分离纯化 ,其 c DNA已被克隆 ,其活性主要受跨类囊体膜的 p H梯度和抗坏血酸浓度的调节 ;玉米黄质环氧化酶还没有被分离出来 ,但其 c DNA也已被克隆 ;其活性主要与NADPH的浓度、O2 及光等有关。  相似文献   

11.
To explore the differences of sesitivities to chill and strong light in indica and japonica rice (Oryza sativa), the changes in unsaturation of thylakoid membrane lipids and xanthophyll cycle were studied under Chill condition and strong light. The contents of unsaturated fatty acids of thylakoid membrane lipids decreased and that of the saturated ones increased with the time of Chill- and strong lighttreatment, resulting in the reduction of the index of unsaturation of fatty acids (IUFA). The activities of violaxanthin deepoxidase (VDE), a key enzyme of xanthophyll cycle, also reduced. The content of violaxanthin (V) increased, and the contents of antheraxanthin (A) and zeaxanthin (Z) decreased, the ratio of (A+Z)/(A+Z+V) decreased correspondingly. Arrhenius analysis showed that VDE was sensitive to both chill and unsaturation level of thylakoid membrane lipids. Correlation analysis showed that there was distinctly positive relationships between IUFA of thylakoid membrane lipids and the activity of VDE, Fv/Fm, and D1 protein content. Lower IUFA values, less fluidity and stability of thylakoid membrane lipids, lower VDE activity and (A+Z)/(A+Z+V) ratio were found in indica rice cv. Shanyou 63 than in japonica rice cv. 9516 under chill and strong light.  相似文献   

12.
Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic app aratus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z)of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (Fv/Fm)and non photochemical quenching (qN) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O[SX(B-*3)-[]·[SX]]2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and Fv/Fm or (A+Z)/(A+Z+V), and a marked negative correlation between Fv/Fm and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(Fv/Fm) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.  相似文献   

13.
Temperature is one of the abiotic factors limiting growth and productivity of plants. In the present work, the effect of low non-freezing temperature, as an inducer of "chilling resistance", was studied in three cultivars of rice (Oryza sativa L.), japonica cv. 9516 (j-9516), the two parental lines of superhigh-yield hybrid rice between subspecies,Peiai/E32 (ji-PE), and the traditional indica hybrid rice Shanyou 63 (i-SY63). Leaves of chill-treated rice showed chilling-induced resistance, as an increase of their low-temperature tolerance was measured using chlorophyll fluorescence measurements, revealing a change in photosystem Ⅱ (PSⅡ) efficiency. After 5 d of exposure to 11℃ under low light (100 μ mol·m-2·s-1), levels of unsaturated fatty acids in PSⅡ thylakoid membrane lipids decreased during the initial 1-2 d, then increased slowly and reached 99.2%, 95.3% and 90.1% of the initial value (0 d) in j-9516,ji-PE and i-SY63, respectively, on the fifth day. However, under medium light (600 μmol·m-2·s-1), all cultivars experienced similar substantial photoinhibition, which approached steady state levels after a decline in levels of unsaturated fatty acids in PSII thylakoid membrane lipids to about 57.1%, 53.8% and 44.5% of the initial values (0 d) in j-9516,ji-PE and i-SY63 on the fifth day. Under either chilling-induced resistance (the former) or low temperature photoinhibition (the latter) conditions, the changes of other physiological parameters such as D1 protein contents,electron transport activities of PSII (ETA), Fv/Fm, xanthophyl cycle activities expressed by DES (deepoxide state)were consistent with that of levels of unsaturated fatty acids in PSⅡ thylakoid membrane lipids. So there were negative correlations between saturated levels of fatty acids (16:1(3t), 16:0, 18:0), especially the 16:1(3t) fatty acid on thylakoid membrane and other physiological parameters, such as D1 protein contents, ETA and (A+Z)/(A+V+Z). A specific role of desaturation of fatty acids and the photoprotective pigments of the xanthophyl cycle, leading to an acclimation response in thylakoid membrane lipids may be involved. We conclude that chilling-induced resistance is accelerated by the unsaturation of thylakoid membranes, and the ability of rice plants to cold-harden can be enhanced by genetic engineering.  相似文献   

14.
Temperature is one of the abiotic factors limiting growth and productivity of plants. In the present work, the effect of low non‐freezing temperature, as an inducer of “chilling resistance”, was studied in three cultivars of rice (Oryza sativa L.), japonica cv. 9516 (j‐9516), the two parental lines of superhigh‐yield hybrid rice between subspecies, Peiai/E32 (ji‐PE), and the traditional indica hybrid rice Shanyou 63 (i‐SY63). Leaves of chill‐treated rice showed chilling‐induced resistance, as an increase of their low‐temperature tolerance was measured using chlorophyll fluorescence measurements, revealing a change in photosystem II (PSII) efficiency. After 5 d of exposure to 11°C under low light (100 μmol m‐2 s‐1), levels of unsaturated fatty acids in PSII thylakoid membrane lipids decreased during the initial 1‐2 d, then increased slowly and reached 99.2%, 95.3% and 90.1% of the initial value (0 d) in j‐9516, ji‐PE and i‐SY63, respectively, on the fifth day. However, under medium light (600 μmol m‐2 s‐1), all cultivars experienced similar substantial photoinhibition, which approached steady state levels after a decline in levels of unsaturated fatty acids in PSII thylakoid membrane lipids to about 57.1%, 53.8% and 44.5% of the initial values (0 d) in j‐9516, ji‐PE and I‐SY63 on the fifth day. Under either chilling‐induced resistance (the former) or low temperature photoinhibition (the latter) conditions, the changes of other physiological parameters such as D1 protein contents, electron transport activities of PSII (ETA), Fv/Fm, xanthophyl cycle activities expressed by DES (deepoxide state) were consistent with that of levels of unsaturated fatty acids in PSII thylakoid membrane lipids. So there were negative correlations between saturated levels of fatty acids (16:1(3t), 16:0, 18:0), especially the 16:1(3t) fatty acid on thylakoid membrane and other physiological parameters, such as D1 protein contents, ETA and (A+Z)/(A+V+Z). A specific role of desaturation of fatty acids and the photoprotective pigments of the xanthophyl cycle, leading to an acclimation response in thylakoid membrane lipids may be involved. We conclude that chilling‐induced resistance is accelerated by the unsaturation of thylakoid membranes, and the ability of rice plants to cold‐harden can be enhanced by genetic engineering.  相似文献   

15.
Physiological indices related to the efficiency ( Fv/Fm ) of light energy conversion in PSⅡ and the peroxidation of membrane lipid were measured in leaves of Oryza sativa L. sp. indica rice cv. “Shanyou 63” and sp. japonica rice cv. “9516” under different temperatures and light intensities for 4 days. No changes in Fv/Fm and membrane lipid peroxidation product (MDA) were observed, so neither photoinhibition nor photooxidation happened in both rice cultivars under moderate temperature and medium light intensity. However, Fv/Fm dropped obviously with no change in MDA contents, and photoinhibition appeared in indica rice cv. “Shanyou 63” under medium temperature and strong light intensity. Furthermore, both photoinhibition and photooxidation were observed in two rice cultivars under chilling temperature and strong light intensity. Experiments with inhibitors under chilling temperature and strong light intensity showed that indica rice had a decrease in D1 protein content and SOD activity, and the extent of inhibition of xanthophyll cycle and nonphotochemical quenching ( qN ) was larger, and a higher level of MDA was observed. The photoinhibition and photooxidation in indica rice were more distinct as compared with japonica rice. The authors suggested that PSⅡ light energy conversion efficiency ( Fv/Fm ) and membrane lipid peroxidation were the key indices for the detection of photooxidation.  相似文献   

16.
The dynamics of the xanthophyll cycle relative to non-photochemical quenching (NPQ) were examined in tobacco plants overexpressing violaxanthin de-epoxidase (VDE), PsbS and PsbS+VDE for effects on NPQ and violaxanthin (V) de-epoxidation over a range of light intensities. Induction of de-epoxidation and NPQ increased in overexpressed VDE and PsbS plants, respectively. Surprisingly, under low light, overexpressing PsbS enhanced de-epoxidation in addition to NPQ. The effect was hypothesized as due to PsbS binding zeaxanthin (Z) or inducing the binding of Z within the quenching complex, thus shifting the equilibrium toward higher de-epoxidation states. Studies in model systems show that Z can stereospecifically inhibit VDE activity against violaxanthin. This effect, observed under conditions of limiting lipid concentration, was interpreted as product feedback inhibition. These results support the hypothesis that the capacity of the thylakoid lipid phase for xanthophylls is limited and modulates xanthophyll-cycle activity, in conjunction with the release of V and binding of Z by pigment-binding proteins. These modulating factors are incorporated into a lipid-matrix model that has elements of a signal transduction system wherein the light-generated protons are the signal, VDE the signal receptor, Z the secondary messenger, the lipid phase the transduction network, and Z-binding proteins the targets.  相似文献   

17.
Seeds of Suaeda salsa were cultured in dark for 3 d and betacyanin accumulation in seedlings was promoted significantly. Then the seedlings with accumulated betacyanin (C+B) were transferred to 14/10 h light/dark and used for chilling treatment 15 d later. Photosystem 2 (PS2) photochemistry, D1 protein content, and xanthophyll cycle during the chilling-induced photoinhibition (exposed to 5 °C at a moderate photon flux density of 500 μmol m−2 s−1 for 3 h) and the subsequent restoration were compared between the C+B seedlings and the control (C) ones. The maximal efficiency of PS2 photochemistry (Fv/Fm), the efficiency of excitation energy capture by open PS2 centres (Fv′/Fm′), and the yield of PS2 electron transport (ΦPS2) of the C+B and C leaves both decreased during photoinhibition. However, smaller decreases in Fv/Fm, Fv′/Fm′, and ΦPS2 were observed in the C+B leaves than in C ones. At the same time, the deepoxidation state of xanthophyll cycle, indicated by (A+Z)/(V+A+Z) ratio, increased rapidly but the D1 protein content decreased considerably during the photoinhibition. The increase in rate of (A+Z)/(V+A+Z) was higher but the D1 protein turnover was slower in C+B than C leaves. After photoinhibition treatment, the plants were transferred to a dim irradiation (10 μmol m−2 s−1) at 25 °C for restoration. During restoration, the chlorophyll (Chl) fluorescence parameters, D1 protein content, and xanthophyll cycle components relaxed gradually, but the rate and level of restoration in the C+B leaves was greater than those in the C leaves. The addition of betacyanins to the thylakoid solution in vitro resulted in similar changes of Fv/Fm, D1 protein content, and (A+Z)/(V+A+Z) ratio during the chilling process. Therefore, betacyanin accumulation in S. salsa seedlings may result in higher resistance to photoinhibition, larger slowing down of D1 protein turnover, and enhancement of non-radiative energy dissipation associated with xanthophyll cycle, as well as in greater restoration after photoinhibition than in the control when subjected to chilling at moderate irradiance.  相似文献   

18.
渗透胁迫下稻苗中游离脯氨酸累积与膜脂过氧化的关系   总被引:43,自引:0,他引:43  
杂交稻幼苗经聚乙二醇(PGE4000)渗透胁迫(-0.95MPa)处理,幼苗含水量及相对含水量下降,游离脯氨酸和膜脂过氧化产物丙二醛(MDA)含量上升,质膜透性增大。随PEG渗透胁迫时间延长,幼苗膜脂饱和脂肪酸含量逐渐增加,不饱和脂肪酸含量降低,不饱和脂肪酸指数(IUFA)减少。脯氨酸累积与MDA增长及膜透性加大呈正相关性,与膜脂脂肪酸不饱和度呈负相关性。讨论了游离脯氨酸累积与细胞透性的相关性,以  相似文献   

19.
The function of chloroplastic NAD(P)H dehydrogenase (NDH) was examined by comparing a tobacco transformant (DeltandhB) in which the ndhB gene had been disrupted with its wild type, upon exposure to chilling temperature (4 degrees C) under low irradiance (100 micro mol m(-2) s(-1) PFD). During the chilling stress, the maximum photochemical efficiency of PSII (F(v)/F(m)) decreased markedly in both the wild type and DeltandhB. However, both F(v)/F(m) and P700(+), as well as the PSII-driven electron transport rate (ETR), in DeltandhB were lower than that in the wild type, implying that NDH-dependent cyclic electron flow around PSI functioned to protect the photosynthetic apparatus from chilling stress under low irradiance. Under the stress, non-photochemical quenching (NPQ), particularly the fast relaxing NPQ component (qf) and the de-epoxidized ratio of the xanthophyll cycle pigments, (A+Z)/(V+A+Z), were distinguishable in DeltandhB from those in the wild type. The lower NPQ in DeltandhB might be related to an inefficient proton gradient across thylakoid membranes (DeltapH) because of lacking an NDH-dependent cyclic electron flow around PSI at chilling temperature under low irradiance.  相似文献   

20.
张金玲  程达  李玉灵 《植物学报》2017,52(3):278-289
为探明毛乌素沙地3年生臭柏(Sabina vulgaris)实生苗在不同光照和水分条件下的光抑制响应机制,研究了各处理臭柏实生苗的最大光化学效率(F_v/F_m)及叶绿素(Chla+Chlb)和叶黄素(A+V+Z)含量,分析了其叶绿素循环和叶黄素循环的变化规律。结果表明,77%透光区通过减少Chlb含量,升高Chla/Chlb,避免光能过剩;同时,增加A+V+Z及热散逸色素(A+Z)含量、提高(A+V+Z)/(Chla+Chlb)和(A+V)/(A+V+Z)值,耗散过剩光能,避免光破坏。25%透光区的叶绿素和叶黄素循环机制随着水分条件的变化迅速发生改变。10%透光区通过增加Chlb含量,降低Chla/Chlb,捕捉更多的光能,几乎不存在光抑制。毛乌素臭柏实生幼苗能够适应不同的光照和水分条件,在恶劣的沙漠中完成天然更新,形成独特的群落景观,与叶绿素循环和叶黄素循环有着密切的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号