首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 248 毫秒
1.
通过电子显微镜观察、DNA断裂检测及类似半胱氨酸蛋白酶(caspase-like proteases,CLPs)降解检测等技术,对杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程的细胞编程死亡进行了研究.分化中的次生木质部细胞总DNA凝胶电泳检测到DNA ladder,并通过TUNEL检测进一步确定了DNA被降解.Western blot结果表明;caspase-8和caspase-3状蛋白酶(caspase-8-和caspase-3-like proteases,CLPs)及多聚ADP-核糖聚合酶(poly(ADP-ribose)polymerase,PARP)在次生木质部分化过程中被降解.这些研究结果表明,杜仲次生木质部的细胞分化是一个典型的编程性死亡(Programmed cell death,PCD)过程,CLPs可能参与了此过程.  相似文献   

2.
木质部细胞分化的程序   总被引:1,自引:0,他引:1  
崔克明 《西北植物学报》2006,26(8):1735-1748
本文主要对近十几年来有关木质部细胞分化研究中使用的实验系统及用这些系统所取得的重要进展作了评述.并以作者实验室的研究成果为基础,结合国内外研究进展,提出木质部细胞分化程序由参与细胞编程死亡(PCD)和次生壁构建的全部基因综合编制而成.以PCD过程各阶段的划分标准来看,木质部细胞分化中从IAA诱导形成层细胞平周分裂到细胞扩大前为PCD的起始阶段,其间包括死亡信号的发生、接受和传导,以及启始caspase(半胱氨酰基天门冬氨酸蛋白酶)类似物(例如caspase-8类似物)的活化;木质部母细胞的径向扩大为PCD的效应阶段,而效应caspase类似物(例如caspase-3类似物)活化DNase、DNA的片段化及次生细胞壁的构建和各种细胞器的解体则为PCD的清除降解阶段.至今还无法将DNase活化及其引起的DNA断裂过程与次生细胞壁构建过程分开.  相似文献   

3.
冉昆  马怀宇  杨洪强 《西北植物学报》2008,28(12):2564-2570
胱天蛋白酶(caspases)在动物细胞程序性死亡(programmed cell death,PCD)的起始、执行以及信号转导阶段起着关键作用,目前在植物中也发现有类胱天蛋白酶(caspase-like proteases,CLPs)的存在,并确认液泡加工酶(VPEs)、metacaspases和丝氨酸内肽酶(sapases)具有CLPs的作用,并证实CLPs参与植物的生长发育、抗病性及胁迫诱导的细胞程序性死亡等.本文对植物CLPs活性、生化结构及生理作用等方面的研究进展进行综述,并与动物caspases进行比较,为今后CLPs活性调节、作用方式及其在植物细胞程序性死亡中的作用等方面的研究提供参考.  相似文献   

4.
本文主要从研究木质部细胞分化常用的实验系统、木质部分化的诱导、木质部细胞的编程性死亡以及次生壁的构建4个方面阐述了木质部细胞分化的研究进展。并对目前研究的热点也是难点问题进行了展望,希望引起同行的兴趣。  相似文献   

5.
杜仲(EucommiaulmoidesOliv.)次生木质部分化过程中,在形成层刚衍生的木薄壁细胞中,酸性磷酸酶(APase)主要分布于核膜边缘和高尔基体;在分化程度较高的木薄壁细胞中,APase散布于整个核中,进而,在各种细胞器残体上聚集;在成熟的木薄壁细胞中,APase沿细胞壁内侧分布。在未成熟导管分子中,核、质膜及纹孔上明显存在APase聚集,进而,核解体;在即将分化成熟的导管分子中,APase主要集中于初生壁;在已分化成熟的导管分子中,APase集中于次生壁。脱分化过程中,只在细胞质中可见分散的APase活性,而细胞核和细胞壁上未见此酶的分布;更深层的即将分化成熟和已分化成熟的导管分子,未见有细胞分裂,其上APase的分布与剥皮前相同。通过比较分化和脱分化过程中APase的分布,推测不同的APase同工酶可能分别参与了次生木质部细胞程序性死亡过程中原生质体的解体和次生壁的建成。APase的聚集程度可能是决定细胞能否脱分化的一个重要特征。  相似文献   

6.
木质部细胞分化和脱分化的机理   总被引:6,自引:0,他引:6  
木质部细胞的分化过程包括了密切不可分的细胞程序死亡和次生壁构建两个过程。现在的研究主要是将两个过程分开来研究,各自在细胞生物学和分子生物学上取得了不少进展,有关次生细胞壁方面的研究时间长,成果也较大。有关木质部细胞脱分化的研究相对较少,但也已取得了可喜的进展。  相似文献   

7.
植物细胞程序性死亡(programmed cell death,PCD)是一种由细胞内部程序控制的、主动的细胞死亡过程。在植物发育、逆境胁迫及超敏反应中,PCD都起着重要的作用。为检测植物PCD过程中类似动物细胞凋亡蛋白酶caspase-3的活性,构建了一个能够在活体植物细胞中实时检测类caspase-3蛋白酶激活的质粒PI—ECFP—EYFP。该质粒在植物细胞中可以表达出两端为青色荧光蛋白(ECFP)和黄色荧光蛋白(EYFP)的融合蛋白。这两个荧光蛋白通过含有caspase-3蛋白酶作用靶点DEVD的短肽相连,从而可以根据荧光共振能量转移现象检测类caspase-3凋亡蛋白酶的激活,以为实时检测植物PCD过程中关键蛋白酶的激活及其调控奠定基础。  相似文献   

8.
采用磷酸铅沉淀技术,对杜仲(Eucommia ulmoides Oliv.)次生木质部细胞分和脱化过程进行了ATPase的超微细胞化学定位。随着分化过程中细胞程序性死亡(programmed cell death,PCD)程度的加深,ATPase在细胞核上的分布由少变多,而在各种细胞器上的分布由有到无,并且随着细胞质的解体,ATPase在细胞壁内侧和纹孔处的分布也由少到多,说明它们的变化是由核基因  相似文献   

9.
羊栖菜多糖通过激活Caspase途径诱导Lovo细胞凋亡   总被引:1,自引:0,他引:1  
研究了羊栖菜多糖(Sargassum Fusiforme Polysaccharides,SFPS)诱导人大肠癌lovo细胞凋亡及凋亡过程中caspase-3、caspase-8、caspase-9的活性变化。MTT法检测SFPS对lovo细胞增殖的抑制率;通过电镜、琼脂糖凝胶电泳、流式细胞术鉴定细胞凋亡;应用Western印迹法测定caspase-3酶原和caspase-9的变化;RToPCR检测caspase-3 mRNA表达;caspase-3,caspase-8、caspase-9活性检测试剂盒观察caspase-3、caspase-8、caspase-9的活性改变。结果显示,SFPS对lovo细胞增殖有显著抑制作用,经形态变化、DNA条带和流式细胞分析,可见明显的细胞凋亡特征。SFPS处理lovo细胞后,发现caspase-3酶原蛋白表达降低,caspase-3 mRNA高表达,并具有剂量和时间的依赖性。而在检测蛋白中,也发现caspase-9被激活进而形成具有活性的片段。另外,caspase的活性检测也进一步发现caspase-3、caspase-9的活性逐步增高。实验结果提示SFPS在体外诱导lovo胞凋亡,这可能是SFPS抑制肿瘤增殖的机制之一,并且是通过激活启动caspase-9,进而激活下游效应caspase-3的级联反应来实现的。  相似文献   

10.
利用TUNEL检测、细胞学及细胞化学方法,对毛竹茎秆纤维细胞发育过程中的细胞程序性死亡进行了研究。在次生壁形成的早期,纤维细胞出现染色质凝聚、细胞器膨胀、液泡膜解体和细胞质泡状化等典型的细胞程序性死亡形态学特征;TUNEL检测反应呈阳性,显示此时的纤维细胞核DNA发生了片段化。此时,在纤维细胞裂解的液泡膜、降解的细胞质和凝聚的染色质上具有ATPase活性。纤维细胞质的Ca^2+水平会随着次生壁的形成而逐渐升高,随后Ca^2+聚集成块状。在初生壁形成后期,纤维细胞染色质上的酸性磷酸酶(APase)活性增强。随着纤维次生壁的持续增厚,ATPase、酸性磷酸酶和Ca^2+将在裂解的细胞质和凝聚的染色质上持续存在多年。结果表明,毛竹茎秆纤维细胞的次生壁形成过程是一个主动自溶的细胞程序性死亡过程。初生壁形成后期染色质上酸性磷酸酶活性增强及次生壁形成期胞质Ca^2+的聚集,与纤维细胞的程序性死亡密切相关。ATPase,Ca^2+和APase参与了纤维细胞程序性死亡过程中原生质体的降解。  相似文献   

11.
Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.  相似文献   

12.
Secondary xylem development has long been recognized as a typical case of programmed cell death (PCD) in plants. During PCD, the degradation of genomic DNA is catalyzed by endonucleases. However, to date, no endonuclease has been shown to participate in secondary xylem development. Two novel Ca 2+ -dependent DNase genes, EuCaN1 and EuCaN2, were identified from the differentiating secondary xylem of the tree Eucommia ulmoides Oliv., their functions were studied by DNase activity assay, in situ hybridization, protein immunolocalization and virus-induced gene silencing experiments. Full-length cDNAs of EuCaN1 and EuCaN2 contained an open reading frame of 987 bp, encoding two proteins of 328 amino acids with SNase-like functional domains. The genomic DNA sequence for EuCaN1 had no introns, while EuCaN2 had 8 introns. EuCaN1 and EuCaN2 digested ssDNA and dsDNA with Ca 2+ -dependence at neutral pH. Their expression was confined to differentiating secondary xylem cells and the proteins were localized in the nucleus. Their activity dynamics was closely correlated with secondary xylem development. Secondary xylem cell differentiation is influenced by RNAi of endonuclease genes. The results provide evidence that the Ca 2+ -dependent DNases are involved in secondary xylem development.  相似文献   

13.
Aponogeton madagascariensis produces perforations over its leaf surface via programmed cell death (PCD). PCD begins between longitudinal and transverse veins at the center of spaces regarded as areoles, and continues outward, stopping several cells from these veins. The gradient of PCD that exists within a single areole of leaves in an early stage of development was used as a model to investigate cellular dynamics during PCD. Mitochondria have interactions with a family of proteases known as caspases, and the actin cytoskeleton during metazoan PCD; less is known regarding these interactions during plant PCD. This study employed the actin stain Alexa Fluor 488 phalloidin, the actin depolymerizer Latrunculin B (Lat B), a synthetic caspase peptide substrate and corresponding specific inhibitors, as well as the mitochondrial pore inhibitor cyclosporine A (CsA) to analyze the role of these cellular constituents during PCD. Results depicted that YVADase (caspase-1) activity is higher during the very early stages of perforation formation, followed by the bundling and subsequent breakdown of actin. Actin depolymerization using Lat B caused no change in YVADase activity. In vivo inhibition of YVADase activity prevented PCD and actin breakdown, therefore substantiating actin as a likely substrate for caspase-like proteases (CLPs). The mitochondrial pore inhibitor CsA significantly decreased YVADase activity, and prevented both PCD and actin breakdown; therefore suggesting the mitochondria as a possible trigger for CLPs during PCD in the lace plant. To our knowledge, this is the first in vivo study using either caspase-1 inhibitor (Ac-YVAD-CMK) or CsA, following which the actin cytoskeleton was examined. Overall, our findings suggest the mitochondria as a possible upstream activator of YVADase activity and implicate these proteases as potential initiators of actin breakdown during perforation formation via PCD in the lace plant.  相似文献   

14.
The small intestinal epithelium is continuously renewed through a balance between cell division and cell loss. How this balance is achieved is uncertain. Thus, it is unknown to what extent programmed cell death (PCD) contributes to intestinal epithelial cell loss. We have used a battery of techniques detecting the events associated with PCD in order to better understand its role in the turnover of the intestinal epithelium, including modified double- and triple-staining techniques for simultaneously detecting multiple markers of PCD in individual cells. Only a partial correlation between TUNEL positivity for DNA fragmentation, c-jun phosphorylation on serine-63, positivity for activated caspase-3 and apoptotic morphology was observed. Our results show that DNA fragmentation does not invariably correlate to activation of caspase-3. Moreover, many cells were found to activate caspase-3 early in the process of extrusion, but did not acquire an apoptotic nuclear morphology until late during the extrusion process. These observations show that the lack of consensus between different methods for detecting PCD may be explained both by different timing of appearance of PCD markers and, additionally, by the occurrence of different forms of PCD during the normal turnover of cells on small intestinal villi.  相似文献   

15.
16.
Lui JC  Kong SK 《FEBS letters》2006,580(8):1965-1970
The involvement of caspase-3 and its failure in the induction of DNA fragmentation during erythropoiesis were investigated with TF-1 cells. During erythroid differentiation, caspase-3 activation and cleavage of caspase-3 substrates such as ICAD (inhibitor of caspase-activated DNase) were detected without concomitant phosphatidyl-serine (PS) externalization and DNA fragmentation. These observations are in contrast to our understanding that DNA is degraded by CAD (caspase-activated DNase) when ICAD is cleaved by caspase-3. Our study demonstrates that CAD is downregulated at the mRNA and protein level during the erythroid differentiation in TF-1 cells. This provides a mechanism for the first time how cells avoid DNA fragmentation with activated caspase-3.  相似文献   

17.
Plants, animals, and several branches of unicellular eukaryotes use programmed cell death (PCD) for defense or developmental mechanisms. This argues for a common ancestral apoptotic system in eukaryotes. However, at the molecular level, very few regulatory proteins or protein domains have been identified as conserved across all eukaryotic PCD forms. A very important goal is to determine which molecular components may be used in the execution of PCD in plants, which have been conserved during evolution, and which are plant-specific. Using Arabidopsis thaliana, we have shown that UV radiation can induce apoptosis-like changes at the cellular level and that a UV experimental system is relevant to the study of PCD in plants. We report here that UV induction of PCD required light and that a protease cleaving the caspase substrate Asp-Glu-Val-Asp (DEVDase activity) was induced within 30 min and peaked at 1 h. This DEVDase appears to be related to animal caspases at the biochemical level, being insensitive to broad-range cysteine protease inhibitors. In addition, caspase-1 and caspase-3 inhibitors and the pan-caspase inhibitor p35 were able to suppress DNA fragmentation and cell death. These results suggest that a YVADase activity and an inducible DEVDase activity possibly mediate DNA fragmentation during plant PCD induced by UV overexposure. We also report that At-DAD1 and At-DAD2, the two A. thaliana homologs of Defender against Apoptotic Death-1, could suppress the onset of DNA fragmentation in A. thaliana, supporting an involvement of the endoplasmic reticulum in this form of the plant PCD pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号