共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Soil cores incubated under air atmosphere with C2H2 at partial pressure of 0.1 kPa, reduced NO3
– to N2O. Glucose and nitrate at higher concentration stimulated the N2O production. Further reduction of N2O to N2 seemed to be temporarely inhibited. However after 12 h N2O concentrations decreased, irrespective of soil treatment. 相似文献
2.
Nitrogen removal in a wastewater treatment plant through biofilters: nitrous oxide emissions during nitrification and denitrification 总被引:1,自引:0,他引:1
In order to estimate N2O emissions from immersed biofilters during nitrogen removal in tertiary treatments at urban wastewater treatment plants (WWTPs), a fixed culture from the WWTP of “Seine Centre” (Paris conurbation) was subjected to lab-scale batch experiments under various conditions of oxygenation and a gradient of methanol addition. The results show that during nitrification, N2O emissions are positively related to oxygenation (R 2 = 0.99). However, compared to the rates of ammonium oxidation, the percentage of emitted N2O is greater when oxygenation is low (0.5–1 mgO2 L−1), representing up to 1% of the oxidized ammonium (0.4% on average). During denitrification, the N2O emission reaches a significant peak when the quantity of methanol allows denitrification of between 66% and 88%. When methanol concentrations lead to a denitrification of close to 100%, the flows of N2O are much lower and represent on average 0.2% of the reduced nitrate. By considering these results, we can estimate, the emissions of N2O during nitrogen removal, at the “Seine Centre” WWTP, to approximately 38 kgN-N2O day−1. 相似文献
3.
Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation 总被引:12,自引:1,他引:12
In this paper we discuss three topics concerning N2O emissions from agricultural systems. First, we present an appraisal of N2O emissions from agricultural soils (Assessment). Secondly, we discuss some recent efforts to improve N2O flux estimates in agricultural fields (Measurement), and finally, we relate recent studies which use nitrification inhibitors to decrease N2O emissions from N-fertilized fields (Mitigation).To assess the global emission of N2O from agricultural soils, the total flux should represent N2O from all possible sources; native soil N, N from recent atmospheric deposition, past years fertilization, N from crop residues, N2O from subsurface aquifers below the study area, and current N fertilization. Of these N sources only synthetic fertilizer and animal manures and the area of fields cropped with legumes have sufficient global data to estimate their input for N2O production. The assessment of direct and indirect N2O emissions we present was made by multiplying the amount of fertilizer N applied to agricultural lands by 2% and the area of land cropped to legumes by 4 kg N2O-N ha-1. No regard to method of N application, type of N, crop, climate or soil was given in these calculations, because the data are not available to include these variables in large scale assessments. Improved assessments should include these variables and should be used to drive process models for field, area, region and global scales.Several N2O flux measurement techniques have been used in recent field studies which utilize small and ultralarge chambers and micrometeorological along with new analytical techniques to measure N2O fluxes. These studies reveal that it is not the measurement technique that is providing much of the uncertainty in N2O flux values found in the literature but rather the diverse combinations of physical and biological factors which control gas fluxes. A careful comparison of published literature narrows the range of observed fluxes as noted in the section on assessment. An array of careful field studies which compare a series of crops, fertilizer sources, and management techniques in controlled parallel experiments throughout the calendar year are needed to improve flux estimates and decrease uncertainty in prediction capability.There are a variety of management techniques which should conserve N and decrease the amount of N application needed to grow crops and to limit N2O emissions. Using nitrification inhibitors is an option for decreasing fertilizer N use and additionally directly mitigating N2O emissions. Case studies are presented which demonstrate the potential for using nitrification inhibitors to limit N2O emissions from agricultural soils. Inhibitors may be selected for climatic conditions and type of cropping system as well as the type of nitrogen (solid mineral N, mineral N in solution, or organic waste materials) and applied with the fertilizers. 相似文献
4.
Luth Robin P Germain P Lecomte M Landrain B Li Y Cluzeau D 《Bioresource technology》2011,102(4):3679-3686
Treatment of liquid manure can result in the production of ammonia, nitrous oxide and methane. Earthworms mix and transform nitrogen and carbon without consuming additional energy. The objective of this paper is to analyse whether earthworms modify the emissions of NH3, N2O, CH4 and CO2 during vermifiltration of pig slurry.The experiment used mesocosms of around 50 L, made from a vermifilter treating the diluted manure of a swine house. Three levels of slurry were added to the mesocosms, with or without earthworms, during one month, in triplicate. Earthworm abundance and gas emissions were measured three and five times, respectively.There was a decrease in emissions of ammonia and nitrous oxide and a sink of methane in treatments with earthworms. We suggest that earthworm abundance can be used as a bioindicator of low energy input, and low greenhouse gas and ammonia output in systems using fresh slurry with water recycling. 相似文献
5.
We studied the export of inorganic carbon and nitrous oxide (N2O) from a Danish freshwater wetland. The wetland is situated in an agricultural catchment area and is recharged by groundwater enriched with nitrate (NO3
–) (1000 M). NO3
– in recharging groundwater was reduced (57.5 mol NO3
– m–2 yr–) within a narrow zone of the wetland. Congruently, the annual efflux of carbon dioxide (CO2) from the sediment was 19.1 mol C m–2 when estimated from monthly in situ measurements. In comparison the CO2 efflux was 4.8 mol C m–2 yr–1 further out in the wetland, where no NO3
– reduction occurred. Annual exports of inorganic carbon in groundwater and surface water was 78.4 mol C m–2 and 6.1 mol C m–2 at the two sites, respectively. N2O efflux from the sedimenst was detectable on five out of twelve sampling dates and was significantly (P < 0.0001) higher in the NO3
– reduction zone (0.35–9.40 mol m–2 h–1, range of monthly means) than in the zone without NO3
– reduction (0.21–0.41 mol m–2 h–1). No loss of dissolved N2O could be measured. Total annual export of N2O was not estimated. The reduction of oxygen (O2) in groundwater was minor throughout the wetland and did not exceed 0.2 mol 02 m–2yr–1. Sulfate (SO4
––) was reduced in groundwater (2.1 mol SO4
–– m–2 yr–1) in the zone without NO3
– reduction. Although the NO3
– in our wetland can be reduced along several pathways our results strongly suggest that NO3
– loading of freshwater wetlands disturb the carbon balance of such areas, resulting in an accelerated loss of inorganic carbon in gaseous and dissolved forms. 相似文献
6.
Most of the small external inputs of N to the Shortgrass steppe appear to be conserved. One pathway of loss is the emission of nitrous oxide, which we estimate to account for 2.5–9.0% of annual wet deposition inputs of N. These estimates were determined from an N2O emission model based on field data which describe the temporal variability of N2O produced from nitrification and denitrification from two slope positions. Soil water and temperature models were used to translate records of air temperature and precipitation between 1950 and 1984 into variables appropriate to drive the gas flux model, and annual N2O fluxes were estimated for that period. The mean annual fluxes were 80 g N ha–1 for a midslope location and 160 g N ha–1 for a swale. Fluxes were higher in wet years than in dry, ranging from 73 to 100 g N ha–1y–1at the midslope, but the variability was not high. N2O fluxes were also estimated from cattle urine patches and these fluxes while high within a urine patch, did not contribute significantly to a regional budget. Laboratory experiments using C2H2 to inhibit nitrifiers suggested that 60–80% of N2O was produced as a result of nitrification, with denitrification being less important, in contrast to our earlier findings to the contrary. Intrasite and intraseasonal variations in N2O flux were coupled to variations in mineral N dynamics, with high rates of N2O flux occurring with high rates of inorganic N turnover. We computed a mean flux of 104 g N ha–1 y–1 from the shortgrass landscape, and a flux of 2.6 × 109 g N y– from all shortgrass steppe (25 × 106 ha). 相似文献
7.
Nitrous oxide emissions from surface flow and subsurface flow constructed wetland microcosms: Effect of feeding strategies 总被引:2,自引:0,他引:2
Wenlin JiaJian Zhang Peizhi LiHuijun Xie Juan Wu Jinhe Wang 《Ecological Engineering》2011,37(11):1815-1821
The effects of continuous and intermittent feeding strategies on nitrogen removal and N2O emission from surface flow and subsurface flow constructed wetlands were evaluated in this study. Microcosm wetlands planted with Phragmites australis were constructed and operated with different feeding strategies for the 4-month experiment. Results showed the intermittent feeding strategy could enhance the removal of ammonium effectively in the subsurface flow constructed wetlands, although it had no significant effect for the surface flow wetlands. And the intermittent feeding mode could promote the emission of N2O. The amount of N2O-N emission from the subsurface flow constructed wetlands with intermittent feeding mode was about 5 times higher than that with continuous feeding strategy and the emission rate ranged from 0.09 ± 0.03 to 7.33 ± 1.49 mg/m2/h. Compared with the surface flow constructed wetlands, the N2O emission in the subsurface flow constructed wetlands was affected significantly by the intermittent feeding mode. 相似文献
8.
The release of N2O from the snow surface in winter and the soil in summer was measured in ten types of temperate ecosystems (bare ground, grassland, forest, marsh, and crop field) in Japan. The snow-covered crop field emitted by far the largest amount of N2O during the winter. Among the snow-covered natural ecosystems studied, marshy ecosystems showed the largest effluxes of N2O. Based on results showing that the magnitude of the winter N2O fluxes was not negligible compared with that of the summer N2O fluxes and because the snow period in the areas studied area is sufficiently long, we suggest that the winter N2O fluxes contribute significantly to the annual emission of N2O in the study areas. 相似文献
9.
10.
Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition 总被引:2,自引:0,他引:2
Wei Zhang Jiangming Mo Guirui Yu Yunting Fang Dejun Li Xiankai Lu Hui Wang 《Plant and Soil》2008,306(1-2):221-236
Emissions of nitrous oxide (N2O) from the soil following simulated nitrogen (N) deposition in a disturbed (pine), a rehabilitated (pine and broadleaf mixed)
and a mature (monsoon evergreen broadleaf) tropical forest in southern China were studied. The following hypotheses were tested:
(1) addition of N will increase soil N2O emission in tropical forests; and (2) any observed increase will be more pronounced in the mature forest than in the disturbed
or rehabilitated forest due to the relatively high initial soil N concentration in the mature forest. The experiment was designed
with four N treatment levels (three replicates; 0, 50, 100, 150 kg N ha−1 year−1 for C (Control), LN (Low-N), MN (Medium-N), and HN (High-N) treatment, respectively) in the mature forest, but only three
levels in the disturbed and rehabilitated forests (C, LN and MN). Between October 2005 to September 2006, soil N2O flux was measured using static chamber and gas chromatography methodology. Nitrogen had been applied previously to the plots
since July 2003 and continued during soil N2O flux measurement period. The annual mean rates of soil N2O emission in the C plots were 24.1 ± 1.5, 26.2 ± 1.4, and 29.3 ± 1.6 μg N2O–N m−2 h−1 in the disturbed, rehabilitated and mature forest, respectively. There was a significant increase in soil N2O emission following N additions in the mature forest (38%, 41%, and 58% when compared to the C plots for the LN, MN, and
HN plots, respectively). In the disturbed forest a significant increase (35%) was observed in the MN plots, but not in the
LN plots. The rehabilitated forest showed no significant response to N additions. Increases in soil N2O emission occurred primarily in the cool-dry season (November, December and January). Our results suggest that the response
of soil N2O emission to N deposition in tropical forests in southern China may vary depending on the soil N status and land-use history
of the forest. 相似文献
11.
Three columns were differentiated with feeding mixture of H2S and NH3 (MFC), feeding NH3 followed by H2S (NFC), and feeding H2S followed by NH3 (SFC). Removal performance, biodegradation capacity and microbial community structures in the three columns were compared. The results show that NFC has a shorter acclimation period for the removal of NH3 gas and nitrification than MFC. Under the high loading of H2S and NH3 at 164 and 82 g m−3 h−1, respectively, NFC exhibited high removal efficiency of NH3 (>95%) while the removal efficiencies were obtained at 63 and 75% in MFC and SFC, respectively. The removal of NH3 gas in NFC was significantly attributed to nitrification (over 50%), while adsorption and chemical reaction contributed to the removal of NH3 in MFC and SFC. The different biodegradation capacities of NH3 could be due to the dissimilarity in the microbial population presented in each column. 相似文献
12.
Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of water table draw-down: Potential feedback to climatic change 总被引:1,自引:0,他引:1
A potential effect of climatic change was simulated by manipulating the water table height within intact peat monoliths. The treatment decreased methane flux (maximum –80%) and increased both carbon dioxide flux (maximum 146%) and nitrous oxide flux maximum 936%). Returning the water table height to its original level caused both nitrous oxide and carbon dioxide flux to rapidly return to control levels. However, methane flux remained at its experimentally induced low levels. 相似文献
13.
Contribution of plants to N
2
O emissions in soil-winter wheat ecosystem: pot and field experiments 总被引:1,自引:0,他引:1
Outdoor pot and field experiments were conducted to assess the role of growing plants in agricultural ecosystem N2O emissions. N2O emissions from plants were quantified as the difference in soil-crop system N2O emissions before and immediately after cutting plants during the main growth stages in 2001–02 and 2002–03 winter wheat
seasons. Emissions of N2O from plants depended on biomass within the same plant developmental status. Field results indicated that the seasonal contribution
of N2O emissions from plants to ecosystem fluxes averaged 25%, ranging from 10% at wheat tillering to 62% at the heading stage.
The fluxes of N2O emissions from plants varied between 0.3 and 3.9 mg N2O-N m−2 day−1 and its seasonal amount was equivalent to 0.23% of plant N released as N2O. A N2O emission coefficient (N2OE, mg N2O-N g−1 C day−1), defined as N2O-N emission in milligrams from per gram carbon of plant dry matter within a day, was represented by a 5-fold variation ranging
from 0.021 to 0.004 mg N2O-N g C−1 day−1. A linear relationship (y=0.4611x+0.0015, r
2=0.9352, p < 0.001) between N2OE (y) and plant dark respiration rate (x, mg CO2-C g C−1 day−1) suggested that in the absence of photosynthesis, some N2O production in plant N assimilation was associated with plant respiration. Although this study could not show whether N2O was produced or transferred by winter wheat plants, these results indicated an important role for higher plant in N2O exchange. Identifying its potential contribution is critical for understanding agricultural ecosystem N2O sources. 相似文献
14.
Frank Brentrup Jürgen Küsters Joachim Lammel Hermann Kuhlmann 《The International Journal of Life Cycle Assessment》2000,5(6):349-357
Nitrogen compounds emitted from the field are usually considered in Life Cycle Assessments (LCA) of agricultural products
or processes. The environmentally most important of these N emissions are ammonia (NH3), nitrous oxide (N20) and nitrate (N03). The emission rates are variable due to the influence of soil type, climatic conditions and agricultural management practices.
Due to considerable financial and time efforts, and great variations in the results, actual measurements of emissions are
neither practical nor appropriate for LCA purposes. Instead of measurements, structured methods can be used to estimate average
emission rates. Another possibility is the use of values derived from the literature which would, however, require considerable
effort compared to estimation methods, especially because the values might only be valid for the particular system under investigation.
In this paper methods to determine estimates for NH3, N20 and NO3 emissions were selected from a literature review. Different procedures were chosen to estimate NH3 emissions from organic (Horlacher &Marschner, 1990) and mineral fertilizers (ECETOC, 1994). To calculate the N2O emissions, a function derived by Bouwman (1995) was selected. A method developed by the German Soil Science Association
(DBG, 1992) was adopted to determine potential NO3 emissions. None of the methods are computer-based and consequently require only a minimum set of input data. This makes them,
on the one hand, transparent and easy to perform, while, on the other hand, they certainly simplify the complex processes. 相似文献
15.
Bouma Tjeerd J. Nielsen Kai L. Eissenstat David M. Lynch Jonathan P. 《Plant and Soil》1997,195(2):221-232
Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of short-term fluctuations of these three environmental factors on the relation between actual and observed root respiration rates. We designed an automated, open, gas-exchange system that allows continuous measurements on 12 chambers with intact roots in soil. By using three distinct chamber designs with each a different path for the air flow, we were able to measure root respiration over a 50-fold range of soil CO2 concentrations (400 to 25000 ppm) and to separate the effect of irrigation on observed vs. actual root respiration rate. All respiration measurements were made on one-year-old citrus seedlings in sterilized sandy soil with minimal organic material.Root respiration was strongly affected by diurnal fluctuations in temperature (Q10 = 2), which agrees well with the literature. In contrast to earlier findings for Douglas-fir (Qi et al., 1994), root respiration rates of citrus were not affected by soil CO2 concentrations (400 to 25000 ppm CO2; pH around 6). Soil CO2 was strongly affected by soil water content but not by respiration measurements, unless the air flow for root respiration measurements was directed through the soil. The latter method of measuring root respiration reduced soil CO2 concentration to that of incoming air. Irrigation caused a temporary reduction in CO2 diffusion, decreasing the observed respiration rates obtained by techniques that depended on diffusion. This apparent drop in respiration rate did not occur if the air flow was directed through the soil. Our dynamic data are used to indicate the optimal method of measuring root respiration in soil, in relation to the objectives and limitations of the experimental conditions. 相似文献
16.
Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest 总被引:8,自引:0,他引:8
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climates. Here we report results of a large‐scale (1 ha) throughfall exclusion experiment conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions by >40% and increased rates of consumption of atmospheric CH4 by a factor of >4. No treatment effect has yet been detected for NO and CO2 fluxes. The responses of these microbial processes after three rainy seasons of the exclusion treatment are characteristic of a direct effect of soil aeration on denitrification, methanogenesis, and methanotrophy. An anticipated second phase response, in which drought‐induced plant mortality is followed by increased mineralization of C and N substrates from dead fine roots and by increased foraging of termites on dead coarse roots, has not yet been detected. Analyses of depth profiles of N2O and CO2 concentrations with a diffusivity model revealed that the top 25 cm soil is the site of most of the wet season production of N2O, whereas significant CO2 production occurs down to 100 cm in both seasons, and small production of CO2 occurs to at least 1100 cm depth. The diffusivity‐based estimates of CO2 production as a function of depth were strongly correlated with fine root biomass, indicating that trends in belowground C allocation may be inferred from monitoring and modeling profiles of H2O and CO2. 相似文献
17.
Periplasmic location of nitrous oxide reductase and its apoform in denitrifying Pseudomonas stutzeri
Immunogold labelling techniques on ultrathin sections of low temperature embedded cells yielded evidence for the periplasmic location of the respiratory enzymes N2O reductase and nitrite reductase (cytochrome cd1) in Pseudomonas stutzeri strain ZoBell. Cell fractionation by spheroplast preparation and two-dimensional electrophoresis showed the absence of a membrane association of these enzymes. Immunocytochemical localization of N2O reductase in a mutant strain deficient in the chromophore of N2O reductase showed the gold label at the cell periphery, indicating that the copper chromophore processing takes place after export of this protein's apoform. 相似文献
18.
Sediments of the river Elbe estuary have been studied to assess their impact on the total nitrogen budget of the estuary. A new laboratory incubation apparatus was used to provide a means of regulating important parameters such as temperature and oxygen concentrations. With this apparatus sediment cores from a typical shallow water area with high organic carbon content were incubated under varying oxygen concentrations in the overlying water. Measurements of ammonium, nitrite, nitrate and nitrous oxide in the water phase were carried out and the fluxes between sediment and water phase calculated. During aerobic conditions in the water phase overall nitrate fluxes between + 4 and –3.5 mmol Nm–2d–1 across the sediment/water interface were observed. Under anaerobic conditions the fluxes increased up to –10 mmol Nm–2 d–1. Nitrous oxide was formed within the sediment under both aerobic and anaerobic conditions. Fluxes into the water phase were highest when the oxygen concentrations in the water phase were low (between 0.1 and 0.6 mg l–1). 相似文献
19.
Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days.The aerobic preincubation caused an increase in NO3
- concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3
- concentration.Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3
- concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3
- consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days. 相似文献
20.
Estavillo JM Merino P Pinto M Yamulki S Gebauer G Sapek A Corré W 《Plant and Soil》2002,239(2):253-265
Soils are an important source of N2O, which can be produced both in the nitrification and the denitrification processes. Grassland soils in particular have a high potential for mineralization and subsequent nitrification and denitrification. When ploughing long term grassland soils, the resulting high supply of mineral N may provide a high potential for N2O losses. In this work, the short-term effect of ploughing a permanent grassland soil on gaseous N production was studied at different soil depths. Fertiliser and irrigation were applied in order to observe the effect of ploughing under a range of conditions. The relative proportions of N2O produced from nitrification and denitrification and the proportion of N2 gas produced from denitrification were determined using the methyl fluoride and acetylene specific inhibitors. Irrespectively to ploughing, fertiliser application increased the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). Application of fertiliser also increased the denitrification N2O/N2 ratio both in the denitrification potential and in the gaseous N productions by denitrification. Ploughing promoted soil organic N mineralization which led to an increase in the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). In both the ploughed and unploughed treatments the 0–10 cm soil layer was the major contributing layer to gaseous N production by all the above processes. However, the contribution of this layer decreased by ploughing, gaseous N productions from the 10 to 30 cm layer being significantly increased with respect to the unploughed treatment. Ploughing promoted both nitrification and denitrification derived N2O production, although a higher proportion of N2O lost by denitrification was observed as WFPS increased. Recently ploughed plots showed lower denitrification derived N2O percentages than those ploughed before as a result of the lower soil water content in the former plots. Similarly, a lower mean nitrification derived N2O percentage was found in the 10–30 cm layer compared with the 0–10 cm. 相似文献