首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sliding tubule model of ciliary motion requires that active sliding of microtubules occur by cyclic cross-bridging of the dynein arms. When isolated, demembranated Tetrahymena cilia are allowed to spontaneously disintegrate in the presence of ATP, the structural conformation of the dynein arms can be clearly resolved by negative contrast electron microscopy. The arms consist of three structural subunits that occur in two basic conformations with respect to the adjacent B subfiber. The inactive conformation occurs in the absence of ATP and is characterized by a uniform, 32 degrees base-directed polarity of the arms. Inactive arms are not attached to the B subfiber of adjacent doublets. The bridged conformation occurs strictly in the presence of ATP and is characterized by arms having the same polarity as inactive arms, but the terminal subunit of the arms has become attached to the B subfiber. In most instances the bridged conformation is accompanied by substantial tip-directed sliding displacement of the bridged doublets. Because the base-directed polarity of the bridged arms is opposite to the direction required for force generation in these cilia and because the bridges occur in the presence of ATP, it is suggested that the bridged conformation may represent the initial attachment phase of the dynein cross-bridge cycle. The force-generating phase of the cycle would then require a tip-directed deflection of the arm subunit attached to the B subfiber.  相似文献   

2.
The contractile axostyle is a ribbon-shaped organelle present in certain species of flagellates found in the hindgut of wood eating insects. This organelle propagates an undulatory wave whose motion, like flagella and cilia, is related to microtubules. Unlike the axoneme of cilia and flagella, however, the axostyle is composed of singlet microtubules linked together in parallel rows. Axostyles were isolated from Cryptocercus gut protozoa with Triton X-100. Normal motility of the isolated axostyle could be restored with adenosine triphosphate (ATP); the specific conditions necessary for this reactivation were essentially identical with those reported for the reactivation of isolated flagella or whole sperm. ATPase activity of the isolated axostyle was comparable to the values reported for ciliary or flagellar axonemes. The axostyle was reasonably specific for ATP. Most of the proteins of the isolated axostyle comigrated with proteins of the ciliary axoneme on sodium dodecyl sulfate (SDS) polyacrylamide gels (i e. equivalent molecular weights). These included the following: the higher molecular weight component of dynein, tubulin, linkage protein (nexin), and various secondary proteins. Evidence for dynein in the axostyle is presented and a model proposed to explain how repeated propagated waves can be generated.  相似文献   

3.
Cation-induced attachment of ciliary dynein cross-bridges   总被引:4,自引:4,他引:0  
Isolated, demembranated Unio gill cilia that have been activated and fixed for thin-section electron microscopy in the presence of 2 mM MgSO4 have 87% of their outer dynein arms attached to an adjacent B subfiber. The distribution of attached arms is uniform with respect to doublet position in the cilium. When both 0.1 mM ATP and Mg++ are added to the activation and fixation solutions, the frequency of bridged arms is reduced to 48%. At the same time, the distribution of the attached arms appears to have been systematically modified with respect to doublet position and the active bend plane. Those doublet pairs positioned in the bend plane where interdoublet sliding is minimal retain a greater number of bridged arms than those doublet pairs positioned outside the bend plane where sliding is maximal. These observations imply a functional coupling of the Mg++-induced bridging of the dynein arms and the subsequent binding and hydrolysis of ATP that results in a force-generating cross-bridge cycle.  相似文献   

4.
Studies were conducted to determine whether the microtubules present within native spindles isolated from eggs of the surf clam, Spisula solidissima, could bind dynein obtained from axonemes of Tetrahymena thermophila. SDS gel electrophoresis revealed that the high molecular weight polypeptides that make up dynein cosedimented with the isolated spindles. Moreover, the ATPase activity of dynein bound to the spindle microtubules was stimulated approximately sevenfold. The birefringence retardation of spindles incubated without dynein decreased from 1.4 nm to an undetectable level within 45 min, whereas that of spindles incubated for the same period of time with dynein was 1.0 nm, approximately 70% of its initial value, thereby indicating that dynein stabilized spindle birefringence. Ultrastructural analysis revealed that each spindle microtubule was decorated with four to seven dynein arms attached by their "B" end, that which cross-bridges the B-subfiber within native axonemes. In addition, the polarity of the spindle microtubules could be determined by the orientation of the bound dynein arms. The results of these studies suggest that the half-spindle is composed of microtubules possessing the same polarity.  相似文献   

5.
Electron micrographs of both negatively contrasted and thin-sectioned lamellibranch gill cilia reveal several new features of ciliary fine structure, particularly in regard to those structures forming intermittent or permanent crossbridges between microtubules. Negative-contrasting reveals the presence of a 14-5-nm repeating bridge between the central microtubules. Frontal views of negatively contrasted dynein arm rows along subfibre A show that the arms (23-nm repeat) in the outer row are displaced in a left-handed manner by 3-4nm with respect to those in the inner row. This displacement is probably a direct reflexion of the helical tubulin subunit lattice of the subfibre. Interdoublet (nexin) links are seen connecting adjacent A and B subfibres at intervals of 86 nm along the doublet. Negative-contrasting shows thin, highly elastic connexions holding the doublets together. When seen in longitudinal thin sections, the interdoublet links are often tilted to considerable angles, indicating they may have an elastic response to interdoublet sliding.  相似文献   

6.
Ciliary doublet microtubules produced by sliding disintegration in 20 muM MgATP2-reassociate in the presence of exogenous 30S dynein and 6 mM MgSO4. The doublets form overlapping arrays, held together by dynein cross-bridges. Dynein arms on both A and B subfibers serve as unambiguous markers of microtubule polarity within the arrays. Doublets reassociate via dynein cross-bridges in both parallel and antiparallel modes, although parallel interactions are favored 2:1. When 20 muM ATP is added to the arrays, the doublets undergo both vanadate-sensitive and insensitive forms of secondary disintegration to reproduce the original population of doublets. The results demonstrate that both parallel and antiparallel doublet cross-bridging is sensitive to dissociation by ATP even though normal ciliary motion depends strictly on dynein interactions between parallel microtubules.  相似文献   

7.
The nexin-dynein regulatory complex (N-DRC) forms a cross-bridge between the outer doublet microtubules of the axoneme and regulates dynein motor activity in cilia/flagella. Although the molecular composition and the three-dimensional structure of N-DRC have been studied using mutant strains lacking N-DRC subunits, more accurate approaches are necessary to characterize the structure and function of N-DRC. In this study, we precisely localized DRC1, DRC2, and DRC4 using cryo–electron tomography and structural labeling. All three N-DRC subunits had elongated conformations and spanned the length of N-DRC. Furthermore, we purified N-DRC and characterized its microtubule-binding properties. Purified N-DRC bound to the microtubule and partially inhibited microtubule sliding driven by the outer dynein arms (ODAs). Of interest, microtubule sliding was observed even in the presence of fourfold molar excess of N-DRC relative to ODA. These results provide insights into the role of N-DRC in generating the beating motions of cilia/flagella.  相似文献   

8.
The rhythmic movement of the microtubular axostyle in the termite flagellate, Pyrsonympha vertens, was analyzed with polarization and electron microscopy. The protozoan axostyle is birefringent as a result of the semi-crystalline alignment of approximately 2,000 microtubules. The birefringence of the organelle permits analysis of the beat pattern in vivo. Modifications of the beat pattern were achieved with visible and UV microbeam irradiation. The beating axostyle is helically twisted and has two principal movements, one resembling ciliary and the other flagellar beating. The anterior portion of the beating axostyle has effective and recovery phases with each beat thereby simulating the flexural motion of a beating cilium. Undulations develop from the flexural flipping motion of the anterior segment and travel along the axostyle like flagellar waves. The shape of the waves differs from that of flagellar waves, however, and are described as sawtooth waves. The propagating sawtooth waves contain a sharp bend, approximately 3 micron in length, made up of two opposing flexures followed by a straight helical segment approximately 23 micron long. The average wavelength is approximately 25 micron, and three to four sawtooth waves travel along the axostyle at one time. The bends are nearly planar and can travel in either direction along the axostyle with equal velocity. At temperatures between 5 degrees and 30 degrees C, one sees a proportionate increase or decrease in wave propagation velocity as the temperature is raised or lowered. Beating stops below 5 degrees C but will resume if the preparation is warmed. A microbeam of visible light shone on a small segment of the axostyle causes the typical sawtooth waves to transform into short sine-like waves that accumulate in the area irradiated. Waves entering the affected region appear to stimulate waves already accumulated there to move, and waves that emerge take on the normal sawtooth wave pattern. The effective wavelengths of visible light capable of modifying the wave pattern is in the blue region of the spectrum. The axostyle is severed when irradiated with an intense microbeam of UV light. Short segments of axostyle produced by severing it at two places with a UV microbeam can curl upon themselves into shapes resembling lockwashers. We propose that the sawtooth waves in the axostyle of P. vertens are generated by interrow cross-bridges which are active in the straight regions.  相似文献   

9.
The translocation of dynein along microtubules is the basis for a wide variety of essential cellular movements. Dynein was first discovered in the ciliary axoneme, where it causes the directed sliding between outer doublet microtubules that underlies ciliary bending. The initiation and propagation of ciliary bends are produced by a precisely located array of different dyneins containing eight or more different dynein heavy chain isoforms. The detailed clarification of the structural and functional diversity of axonemal dynein heavy chains will not only provide the key to understanding how cilia function, but also give insights applicable to the study of non-axonemal microtubule motors.  相似文献   

10.
The “9+2” axoneme is a highly specific cylindrical machine whose periodic bending is due to the cumulative shear of its 9 outer doublets of microtubules. Because of the discrete architecture of the tubulin monomers and the active appendices that the outer doublets carry (dynein arms, nexin links and radial spokes), this movement corresponds to the relative shear of these topological verniers, whose characteristics depend on the geometry of the wave train. When an axonemal segment bends, this induces the compressed and dilated conformations of the tubulin monomers and, consequently, the modification of the spatial frequencies of the appendages that the outer doublets carry. From a dynamic point of view, the adjustments of the spatial frequencies of the elements of the two facing verniers that must interact create different longitudinal periodic patterns of distribution of the joint probability of the molecular interaction as a function of the location of the doublet pairs around the axonemal cylinder and their spatial orientation within the axonemal cylinder. During the shear, these patterns move along the outer doublet intervals at a speed that ranges from one to more than a thousand times that of sliding, in two opposite directions along the two opposite halves of the axoneme separated by the bending plane, respecting the polarity of the dynein arms within the axoneme. Consequently, these waves might be involved in the regulation of the alternating activity of the dynein arms along the flagellum, because they induce the necessary intermolecular dialog along the axoneme since they could be an element of the local dynamic stability/instability equilibrium of the axoneme. This complements the geometric clutch model [Lindemann, C., 1994. A “geometric clutch” hypothesis to explain oscillations of the axoneme of cilia and flagella. J. Theor. Biol. 168, 175-189].  相似文献   

11.
A theoretical model based on molecular mechanisms of both dynein cross-bridges and radial spokes is used to study bend propagation by eukaryotic flagella. Though nine outer doublets are arranged within an axoneme, a simplified model with four doublets is constructed on the assumption that cross-bridges between two of the four doublets are opposed to those between the other two, corresponding to the geometric array of cross-bridges on the 6-9 and the 1-4 doublets in the axoneme. We also assume that external viscosity is zero, whereas internal viscosity is non-zero in order to reduce numerical complexity. For demonstrating flagellar movement, computer simulations are available by dividing a long flagellum into many straight segments. Considering the fact that dynein cross-bridge spacing is almost equal to attachment site spacing, we may use a localized cross-bridge distribution along attachment sites in each straight segment. Dynamics of cross-bridges are determined by a three-state model, and effects of radial spokes are represented by a periodic mechanical potential whose periodicity is considered to be a stroke distance of the radial spoke. First of all, we examine the model of a short segment to know basic properties of the system. Changing parameters relating to "activation" of cross-bridges, our model demonstrates various phenomena; for example "excitable properties with threshold phenomena" and "limit cycle oscillation". Here, "activation" and "inactivation" (i.e. switching mechanisms) between a pair of oppositely-directed cross-bridges are essential for generation of excitable or oscillatory properties. Next, the model for a flagellar segment is incorporated into a flagellum with a whole length to show bending movement. When excitable properties of cross-bridges, not oscillatory properties, are provided along the length of the flagellum and elastic links between filaments are presented at the base, then our model can demonstrate self-organization of bending waves as well as wave propagation without special feedback control by the curvature of the flagellum. Here, "cooperative interaction" between adjacent short segments, based on "cooperative dynamics" of cross-bridges, is important for wave propagation.  相似文献   

12.
The axostyle of Pyrsonympha vertens is a cellular organelle composed of interconnected microtubules. In living organisms the axostyle has waves which originate at the anterior end of the protozoon and traverse the length to the posterior end of the protozoon so that an average of 3–4 waves are present in the organelle at any given point in time. The part of the axostyle between the waves is straight. In sections through the middle of the straight part, the microtubules are hexagonally packed, with predominant connections between tubules in rows across the width of the axostyle, but the microtubules are rectilinearly packed through the wave. The wave appears to involve changes in orientation and arrangement of the microtubules. The general structure of the microtubules, cross-bridges and axostyle in the straight and bent portions are described and related to the wave propagation by this organelle.  相似文献   

13.
ABSTRACT Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N+1) upward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. the 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2-, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

14.
The movement of eukaryotic flagella is characterized by its oscillatory nature. In sea urchin sperm, for example, planar bends are formed in alternating directions at the base of the flagellum and travel toward the tip as continuous waves. The bending is caused by the orchestrated activity of dynein arms to induce patterned sliding between doublet microtubules of the flagellar axoneme. Although the mechanism regulating the dynein activity is unknown, previous studies have suggested that the flagellar bending itself is important in the feedback mechanism responsible for the oscillatory bending. If so, experimentally bending the microtubules would be expected to affect the sliding activity of dynein. Here we report on experiments with bundles of doublets obtained by inducing sliding in elastase-treated axonemes. Our results show that bending not only "switches" the dynein activity on and off but also affects the microtubule sliding velocity, thus supporting the idea that bending is involved in the self-regulatory mechanism underlying flagellar oscillation.  相似文献   

15.
Dynein was obtained by high salt extraction of Tetrahymena cilia and purified by DEAE-Sephacel chromatography. This fraction consisted of a mixture of 30 S dynein (80%) and the 14 S ATPase (15%). The column purification effectively removed tubulin and adenylate kinase. Sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the 30 S dynein was composed of a major heavy chain (approximately 400 kD, three copies), three intermediate chains (70, 85, and 100 kD), and a group of light chains (approximately 20 kD). The binding of the column-purified dynein to bovine brain microtubules was characterized as follows. (i) Titration of the dynein with microtubules showed a linear increase in turbidity up to an equivalence point of 2.7 mg of dynein/mg of tubulin with apparently tight binding; (ii) the addition of ATP caused the turbidity of the solution of decrease to a level equal to the sum of free dynein plus microtubules; (iii) transmission electron microscopy indicated that microtubules were decorated with dynein arms spaced at a 24-nm longitudinal repeat and that the dynein decoration was removed upon addition of ATP; (iv) cross-section images of microtubules that were saturated with dynein showed six to seven dynein arms around a microtubule consisting of 14 protofilaments, corresponding to a molar ratio of one dynein/six tubulin dimers; (v) the dynein arms were bound primarily by their broader end which corresponds to the end normally bound to the B-subfiber in vivo. Experiments with purified 30 and 14 S dyneins indicated that the dynein-microtubule binding activity and the ATP-induced dissociation were the properties of the 30 S dynein alone. These studies demonstrate that the 30 S dynein under our conditions (50 mM PIPES, pH 6.96, 4 mM MgSO4) interacts with bovine brain microtubules through the ATP-sensitive site of the dynein arm.  相似文献   

16.
Microtubules have a persistence length of the order of millimeters in vitro, but inside cells they bend over length scales of microns. It has been proposed that polymerization forces bend microtubules in the vicinity of the cell boundary or other obstacles, yet bends develop even when microtubules are polymerizing freely, unaffected by obstacles and cell boundaries. How these bends are formed remains unclear. By tracking the motions of microtubules marked by photobleaching, we found that in LLC-PK1 epithelial cells local bends develop primarily by plus-end directed transport of portions of the microtubule contour towards stationary locations (termed pinning points) along the length of the microtubule. The pinning points were transient in nature, and their eventual release allowed the bends to relax. The directionality of the transport as well as the overall incidence of local bends decreased when dynein was inhibited, while myosin inhibition had no observable effect. This suggests that dynein generates a tangential force that bends microtubules against stationary pinning points. Simulations of microtubule motion and polymerization accounting for filament mechanics and dynein forces predict the development of bends of size and shape similar to those observed in cells. Furthermore, simulations show that dynein-generated bends at a pinning point near the plus end can cause a persistent rotation of the tip consistent with the observation that bend formation near the tip can change the direction of microtubule growth. Collectively, these results suggest a simple physical mechanism for the bending of growing microtubules by dynein forces accumulating at pinning points.  相似文献   

17.
The gross morphology of the protozoan microtubule axostyle of Saccinobaculus ambloaxostylus can now be described in macromolecular detail. The left-handed coil of the axostyle is seen to be dependent upon the asymmetry inherent in the constituent microtubules as expressed by the specific array of linkages between microtubules and by a possible tendency for microtubules to coil into left-handed helices. The laminated sheets of microtubules are not aligned parallel to the long axis of the organelle, but become increasingly tilted off-axis as one descends through the sheets of microtubules from the convex to the concave surface of the axostyle. Fine-structural analysis of the axostyle indicates similarities of the linkages to dynein. The potential loci of the force-generating protein(s) are discussed as well as implications of the axostyle's structure on general microtubule function.  相似文献   

18.
Tetrahymena 30S dynein was extracted with 0.5 M KCl and tested for retention of several functional properties associated wtih its in situ force-generating capacity. The dynein fraction will rebind to extracted outer doublets in the presence of Mg2+ to restore dynein arms. The arms attach at one end to the A subfiber and form bridges at the other end to the B subfiber of an adjacent doublet. Recombined arms retain an ATPase activity that remains coupled to potential generation of interdoublet sliding forces. To examine important aspects of the dynein- tubulin interaction that we presume are directly related to the dynein force-generating cross-bridge cycle, a simple and quantitative spectrophotometric assay was devised for monitoring the associations between isolated 30S dynein and the B subfiber. Utilizing this assay, the binding of dynein to B subfibers was found to be dependent upon divalent cations, saturating at 3 mM Mg2+. Micromolar concentrations of MgATP2- cause the release of dynein from the B subfiber; however, not all of the dynein bound under these conditions is released by ATP. ATP- insensitive dynein binding results from dynein interactions with non-B- tubule sites on outer-doublet and central-pair microtubules and from ATP-insensitive binding to sites on the B subfiber. Vanadate over a wide concentration range (10(-6)-10(-3) M) has no effect on the Mg2+- induced binding of dynein or its release by MgATP2-, and was used to inhibit secondary doublet disintegration in the suspensions. In the presence of 10 microM vanadate, dynein is maximally dissociated by MgATP2- concentrations greater than or equal to 1 microM with half- maximal release at 0.2 microM. These binding properties of isolated dynein arms closely resemble the cross-bridging behavior of in situ dynein arms reported previously, suggesting that quantitative studies such as those presented here may yield reliable information concerning the mechanism of force generation in dynein-microtubule motile systems. The results also suggest that vanadate may interact with an enzyme- product complex that has a low affinity for tubulin.  相似文献   

19.
Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.  相似文献   

20.
With the rapid-freeze, deep-etch replica technique, the structural conformations of outer dynein arms in demembranated cilia from Tetrahymena were analyzed under two different conditions, i.e., in the absence of ATP and in the presence of ATP and vanadate. In the absence of ATP, the lateral view of axonemes was characterized by the egg- shaped outer dynein arms, which showed a slightly baseward tilt with a mean inclination of 11.1 degrees +/- 3.4 degrees SD from the perpendicular to the doublet microtubules. On the other hand, in the presence of 1 mM ATP and 100 microM vanadate, the outer arms were extended and slender and showed an increased baseward tilt with a mean inclination of 31.6 degrees +/- 4.9 degrees SD. In ATP-activated axonemes, these two types of arms coexisted, each type occurring in groups along one row of outer arms. These findings strongly suggest that the interdoublet sliding is caused by dynamic structural changes of dynein arms that follow the hydrolysis of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号