首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
A simple radioassay for dihydroorotate dehydrogenase (DHO-DHase; EC 1.3.3.1) has been developed. l-[carboxy-14C]Dihydroorotate was prepared from [carboxy-14C]orotic acid using DHO-DHase derived from Zymobacterium oroticum and was purified by elution from DEAE-Sephadex A-25 with 0.2 m ammonium formate, pH 7. DHO-DHase activity in human spleen mitochondria was determined by the release of 14CO2 from the carboxy-14C-labeled l-dihydroorotate, the reaction being coupled with added orotate phosphoribosyltransferase and orotidylate decarboxylase. An apparent Km value of ~5 μm for l-dihydroorotate was established using the radioassay. This value correlated well with results from other methods.  相似文献   

2.
During the cource of the investigation of ribotidation of purine and pyrimidine bases by Brevibacterium ammoniagenes ATCC 6872, it was found that a large amount of uridine 5′-monophosphate (UMP) was accumulated in the culture broth when the organism was incubated in a medium containing uracil or orotic acid. The yields of UMP were 83% (4.8 mg/ml) from uracil and 100% (4.3 mg/ml) from orotic acid when each substrate was added at the concentration of 2 mg/ml.

Addition of 6-azauracil or 5-hydroxyuracil to the culture of the organism during cultivation led to the accumulation of both orotidine 5′-monophosphate (OMP) and UMP. The accumulation of OMP seemed to be due to the inhibition of OMP decarboxylase (E. C. 4.1.1.23) by the ribotide formed from each base. The OMP accumulation was enhanced by the addition of orotic acid in addition to 6-azauracil. When 6-azauracil was added to the medium before inoculation, UMP was predominantly accumulated, and when it was added after one day incubation, OMP was predominantly accumulated. A largest accumulation (3.6 mg/ml) of OMP was obtained when 6-azauracil was added on the 1st day and orotic acid was added on the 3rd day.

UMP and OMP accumulated in the medium were isolated from the cultured broth and identified by usual methods.  相似文献   

3.
Summary Mutations at the Dhod locus have been isolated following ethylmethanesulfonate mutagenesis. These mutants express those phenotypes common to other mutations of the de novo pyrimidine pathway: specific wing and leg defects and female sterility. Dihydroorotate dehydrogenase activity is severely reduced in all Dhod mutants, whereas levels of the other pathway enzymes are largely unaffected. The twelve Dhod mutations described here comprise a single complementation group. All of these mutations are nonlethal and the collection includes apparent amorphic as well as hypomorphic alleles. These results are discussed relative to the properties of the complex loci that encode the other steps of de novo pyrimidine biosynthesis.Abbreviations DHOase dihydroorotase (EC 3.5.2.3.) - DHOdehase dihydroorotate dehydrogenase (EC 1.3.3.1.) - EMS ethylmethanesulfonate - ODCase orotidylate decarboxylase (EC 4.1.1.23) - OPRTase orotate phosphoribosyltransferase (EC 2.4.2.10) - UMP uridine 5-monophosphate  相似文献   

4.
Evidence of the primary sites for the regulation of de novo pyrimidine biosynthesis by purine and pyrimidine nucleosides has been obtained in tissue slices through measurements of the incorporation of radiolabeled precursors into an intermediate and end product of the pathway. Both purine and pyrimidine nucleosides inhibited the incorporation of [14C]-NaHCO3 into orotic acid and uridine nucleotides, and the inhibition was found to be reversible upon transferring the tissue slices to a medium lacking nucleoside. The ammonia-stimulated incorporation of [14C]NaHCO3 into orotic acid, which is unique to liver slices, was sensitive to inhibition by pyrimidine nucleosides at physiological levels of ammonia, but this regulatory mechanism was lost at toxic levels of ammonia. Adenosine, but not uridine, was found to have the additional effects of inhibiting the conversion of [14C]orotic acid to UMP and depleting the tissue slices of PRPP. Since PRPP is required as an activator of the first enzyme of the de novo pathway, CPSase II, and a substrate of the fifth enzyme, OPRTase, these results indicate that adenosine inhibits the incorporation of [14C]NaHCO3 into orotic acid and the incorporation of [14C]orotic acid into UMP by depriving CPSase II and OPRTase, respectively, of PRPP. Uridine or its metabolites, on the other hand, appear to control the de novo biosynthesis of pyrimidines through end product inhibition of an early enzyme, most likely CPSase II. We found no evidence of end product inhibition of the conversion of orotic acid to UMP in tissue slices.  相似文献   

5.
Use of a convenient and inexpensive apparatus for trapping14CO2 from biological reactions in small volumes is described. Alternative scintillants for estimating14CO2 trapped in KOH are compared, toluene methoxyethanol (2:1) based scintillants and Instagel (TM-Packard) were efficient and more stable than the dioxane/Cab-O-Sil or toluene/Triton X-100 mixtures usually used. The usefulness of the technique is illustrated with microassays of OMP decarboxylase (EC 4.1.1.23), OMP pyrophosphorylase (EC 2.4.2.10) in the fission yeastSchizosaccharomyces pombe.  相似文献   

6.
The de novo biosynthesis of pyrimidine nucleotides is completed by two sequential enzyme activities that convert orotate plus 5-phosphoribosyl-1-pyrophosphate to orotidine-5′-monophosphate (OMP) and PPi and then decarboxylate OMP to produce 5′-uridylic acid. In mammalian cells the two enzyme activities, orotate phosphoribosyltransferase and orotidine-5′-phosphate decarboxylase, form a normally inseparable enzyme complex. It was previously reported that this complex is able to channel the intermediate product, OMP (Traut, T. W., and Jones, M. E., 1977, J. Biol. Chem.252, 8374–8381). The studies reported here indicate that one advantage of this channeling of OMP is to spare OMP from being degraded to orotidine by a potentially competitive nucleotidase activity. Yeast cells have two separate enzymes instead of an enzyme complex, and lack the ability to channel OMP. The OMP formed in yeast cells is not degraded because these cells lack significant nucleotidase activity. These results suggest that the capability for channeling OMP may have been important in evolving the enzyme complex found in mammalian cells.  相似文献   

7.
An orotate phosphoribosyltransferase, OPRTase, assay method which relies upon binding reactant [3H]orotic acid and product [3H]orotidine-5'-monophosphate to polyethyleneimine-impregnated-cellulose resin and collecting on a GFC glass fiber filter is presented. Elution with 2 X 5 ml of 0.1 M sodium chloride in 5 mM ammonium acetate removes all of the orotate and leaves all of the product orotidine monophosphate (OMP) bound so that it may be measured in a scintillation counter. It was found that the addition of 10 microM barbituric acid riboside monophosphate to the reaction mixture prevented the conversion of OMP to UMP and products of UMP. The assay is suitable for measurement of OPRTase activity with purified enzyme or in crude homogenates. A modification of this scheme using commercially available yeast OPRTase and 10 microM of unlabeled OMP provides an assay for phosphoribosylpyrophosphate with a sensitivity such that 10 pmol of PRPP may be measured.  相似文献   

8.
Summary Callus cultures derived from roots of summer squash (Cucurbita pepo L. c.v. Early Prolific Straightneck) grown in the dark at 27° C on Murashige and Skoog medium supplemented per liter with 30 g sucrose, 100 mg myo-inositol, 10 mg indole-butyric acid, 2 mg glycine, 1 mg thiamin, 0.5 mg nicotinic acid, 0.5 mg pyridoxine, and 2 g Gelrite were capable of synthesizing pyrimidine nucleotides both de novo and through salvage of existing pyrimidine nucleotides and bases. Evidence that the de novo biosynthesis of pyrimidine nucleotides proceeded via the orotate pathway in this tissue included: (a) demonstration of the incorporation of NaH14CO3 and [14C6]orotic acid into uridine nucleotides (ΣUMP), and (b) demonstration that the addition of 6-azauridine blocked the incorporation of these two precursors into ΣUMP. The synthesis of pyrimidine nucleotides through the salvage of existing pyrimidine bases and ribosides was demonstrated by measuring the incorporation of [14C2]uracil and [14C2]uridine into ΣUMP. Salvage of both [14C2]uracil and [14C2]uridine was sensitive to inhibition by 6-azauridine or one of its metabolites. The orotic acid pathway for the de novo biosynthesis of pyrimidine nucleotides was demonstrated to be sensitive to end-product inhibition. Uridine, or one of its metabolites, inhibited the incorporation of NaH14CO3, but not [14C6]orotic acid, into ΣUMP. Evidence is presented suggesting that Aspartate carbomoyltransferase is the site of feedback control. This work was supported by the Citrus Research Center and Agricultural Experiment Station of the University of California, Riverside, CA. Submitted in partial fulfillment of the requirements of the University of California for the Master of Science degree in botany (F-F.L.)  相似文献   

9.
Lovatt et al. (1979 Plant Physiol 64: 562-569) have previously demonstrated that end-product inhibition functions as a mechanism regulating the activity of the orotic acid pathway in intact cells of roots excised from 2-day-old squash plants (Cucurbita pepo L. cv Early Prolific Straightneck). Uridine (0.5 millimolar final concentration) or one of its metabolites inhibited the incorporation of NaH14CO3, but not [14C]carbamylaspartate or [14C]orotic acid, into uridine nucleotides (ΣUMP). Thus, regulation of de novo pyrimidine biosynthesis was demonstrated to occur at one or both of the first two reactions of the orotic acid pathway, those catalyzed by carbamylphosphate synthetase (CPSase) and aspartate carbamyltransferase (ACTase). The results of the present study provide evidence that ACTase alone is the site of feedback control by added uridine or one of its metabolites. Evidence demonstrating regulation of the orotic acid pathway by end-product inhibition at ACTase, but not at CPSase, includes the following observations: (a) addition of uridine (0.5 millimolar final concentration) inhibited the incorporation of NaH14CO3 into ΣUMP by 80% but did not inhibit the incorporation of NaH14CO3 into arginine; (b) inhibition of the orotate pathway by added uridine was not reversed by supplying exogenous ornithine (5 millimolar final concentration), while the incorporation of NaH14CO3 into arginine was stimulated more than 15-fold when both uridine and ornithine were added; (c) incorporation of NaH14CO3 into arginine increased, with or without added ornithine when the de novo pyrimidine pathway was inhibited by added uridine; and (d) in assays employing cell-free extracts prepared from 2-day-old squash roots, the activity of ACTase, but not CPSase, was inhibited by added pyrimidine nucleotides.  相似文献   

10.
The multifunctional protein uridine 5'-monophosphate (UMP) synthase catalyzes the final two reactions of the de novo biosynthesis of UMP in mammalian cells by the sequential action of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate (OMP) decarboxylase (EC 4.1.1.23). This protein is composed of one or two identical subunits; the monomer weighs of 51,500 daltons. UMP synthase from mouse Ehrlich ascites cells can exist as three distinct species as determined by sucrose density gradient centrifugation: a 3.6 S monomer, a 5.1 S dimer, and a 5.6 S conformationally altered dimer. Limited digestion of each of these three species with trypsin produced a 28,500-dalton peptide that was relatively resistant to further proteolysis. The peptide appears to be one of the two enzyme domains of UMP synthase for it retained only OMP decarboxylase activity. Similar results were obtained when UMP synthase was digested with elastase. OMP decarboxylase activity was less stable for the domain than for UMP synthase; the domain can rapidly lose activity upon storage or upon dilution. The size of the mammalian OMP decarboxylase domain is similar to that of yeast OMP decarboxylase. If the polypeptides which are cleaved from UMP synthase by trypsin are derived exclusively from either the amino or the carboxyl end of UMP synthase, then the size of a fragment possessing the orotate phosphoribosyltransferase domain could be as large as 23,000 daltons which is similar in size to the orotate phosphoribosyltransferase of yeast and of Escherichia coli.  相似文献   

11.
The type I phosphoribosyltransferase OMP synthase (EC 2.4.2.10) is involved in de novo synthesis of pyrimidine nucleotides forming the UMP precursor orotidine 5′-monophosphate (OMP). The homodimeric enzyme has a Rossman α/β core topped by a base-enclosing “hood” domain and a flexible domain-swapped catalytic loop. High-resolution X-ray structures of the homologous Salmonella typhimurium and yeast enzymes show that a general compacting of the core as well as movement of the hood and a major disorder-to-order transition of the loop occur upon binding of ligands MgPRPP and orotate. Here we present backbone NMR assignments for the unliganded yeast enzyme (49 kDa) and its complex with product OMP. We were able to assign 212–213 of the 225 non-proline backbone 15N and amide proton resonances. Significant difference in chemical shifts of the amide cross peaks occur in regions of the structure that undergo movement upon ligand occupancy in the S. typhimurium enzyme.  相似文献   

12.
A simple and direct method for the detection of ornithine decarboxylase (EC 4.1.1.17) activity is presented. It is based upon the selective binding of putrescine to Whatman P81 paper, a strong cation-exchanger, in the presence of 0.1 m NH3. The assay is easy to perform and has an advantage over the more frequently used CO2 trapping methods which can yield spurious CO2 formation due to the action of enzymes other than ornithine decarboxylase.  相似文献   

13.
Fruiting structures of a number of legumes including chickpea are known to carry out photosynthetic CO2 assimilation, but the pathway of CO2 fixation and particularly the role of phosphoenolpyruvate carboxylase (EC 4.1.1.31) in these tissues is not clear. Activities of some key enzymes of the Calvin cycle and C4 metabolism, rates of 14CO2 fixation in light and dark, and initial products of photosynthetic 14CO2 fixation were determined in podwall and seedcoat (fruiting structures) and their subtending leaf in chickpea (Cicer arietinum L.). Compared to activities of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and other Calvin cycle enzyme, viz. NADP+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13), NAD+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) and ribulose-5-phosphate kinase (EC 2.7.1.19), the levels of phosphoenolpyruvate carboxylase and other enzymes of C4 metabolism viz. NADP+-malate dehydrogenase (EC 1.1.1.82), NAD+-malate dehydrogenase (EC 1.1.1.37), NADP+ malic enzyme (EC 1.1.1.40), NAD+-malic enzyme (EC 1.1.1.39), glutamate oxaloacetate transaminase (EC 2.6.1.1) and glutamate pyruvate transaminase (EC 2.6.1.2), were generally much higher in podwall and seedcoat than in the leaf. Podwall and seedcoat fixed 14CO2 in light and dark at much higher rates than the leaf. Short-term assimilation of 14CO2 by illuminated fruiting structures produced malate as the major labelled product with less labelling in 3-phosphoglycerate, whereas the leaf showed a major incorporation into 3-phosphoglycerate. It seems likely that the fruiting structures of chickpea utilize phosphoenolpyruvate carboxylase for recapturing the respired carbon dioxide.  相似文献   

14.
Attempts were made with success to develop a two-step biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by Corynebacterium ammoniagenes ATCC 6872: the strain was first cultivated in a high salt mineral medium, and then cells were harvested and used as the catalyst in the UMP production reaction. Effects of cultivation and reaction conditions on UMP production were investigated. The cells exhibited the highest biocatalytic ability when cultivated in a medium containing corn steep liquor at pH 7.0 for 15 h in the exponential phase of growth. To optimize the reaction, both “one-factor-at-a-time” method and statistical method were performed. By “one-factor-at-a-time” optimization, orotic acid, glucose, phosphate ion (equimolar KH2PO4 and K2HPO4), MgCl2, Triton X-100 were shown to be the optimum components for the biocatalytic reaction. Phosphate ion and C. ammoniagenes cell were furthermore demonstrated as the most important main effects on UMP production by Plackett–Burman design, indicating that 5-phosphoribosyl-1-pyrophosphate (PRPP) synthesis was the rate-limiting step for pyrimidine nucleotides production. Optimization by a central composition design (CCD) was then performed, and up to 32 mM (10.4 g l−1) UMP was accumulated in 24 h from 38.5 mM (6 g l−1) orotic acid. The yield was threefold higher than the original UMP yield before optimization.  相似文献   

15.
In cell extracts of Rhodopseudomonas sphaeroides grown on meso-tartrate the activities of the bifunctional L(+)-tartrate dehydrogenase-D(+)-malate dehydrogenase (decarboxylating) (EC 1.1.1.93 and 1.1.1.83, respectively) could be measured spectrophotometrically but not the activity of a meso-tartrate dehydrogenase or dehydratase. However, an enzyme activity was detected manometrically that catalyzed the stoichiometric release of CO2 from mesotartrate in a molar ratio of 1:1. This reaction required catalytic amounts of NAD and the presence of both divalent (Mn2+ or Mg2+) and monovalent (NH 4 + or K+) cations. Purification of the meso-tartrate decarboxylase showed that it was part of the bifunctional L(+)-tartrate dehydrogenase-D(+)-malate dehydrogenase (decarboxylating), which thus possessed a third catalytic function. The homogeneous enzyme catalyzed the stoichiometric conversion of incso-tartaric acid to D(-)-glyceric acid and CO2. All interfering catalytic activities had been eliminated during the course of enzyme purification.  相似文献   

16.
17.
R W McClard  K M Shokat 《Biochemistry》1987,26(12):3378-3384
Uridylate synthase is a bifunctional protein that first forms orotidine 5'-phosphate (OMP) from orotate via its orotate phosphoribosyltransferase activity (EC 2.4.2.10) and then converts OMP to uridine 5'-phosphate (UMP) via the OMP decarboxylase activity (EC 4.1.1.23). A computer modeling analysis of the experiments that led to the proposal [Traut, T.W., & Jones, M.E. (1977) J. Biol. Chem. 252, 8374-8381] that uridylate synthase channels intermediate OMP suggests that the experimental results do not demonstrate preferential use of OMP generated in the bifunctional complex as against exogenous OMP. This analysis shows that the experimentally observed amounts of [6-14C]UMP from [6-14C]orotate in the presence of various amounts of exogenous [7-14C]OMP agree well with the amounts predicted by the computer simulations. Thus we conclude that uridylate synthase does not channel OMP. Additionally, the subsequent suggestion that channeling of OMP occurs to protect the intermediate from degradation by a nucleotidase [Traut, T.W. (1980) Arch. Biochem. Biophys. 200, 590-594] seems unlikely. The appropriate computer simulation demonstrates that low transient levels of OMP and protection of the intermediate are provided for strictly by the kinetic parameters of orotate phosphoribosyltransferase, OMP decarboxylase, and the nucleotidase. Additionally, calculations show that, in both sets of published experiments, the concentration of transient OMP greatly exceeded the concentration of OMP decarboxylase active sites. Thus, channeling of OMP by the bifunctional complex cannot be invoked to explain the evolution of uridylate synthase, and that event must be the result of some other selective pressure.  相似文献   

18.
Attempts were made with success to produce uridine 5′-monophosphate (UMP) from orotic acid by a recombinant Saccharomyces cerevisiae strain pYX212-URA5/BJX12, using the whole cell biocatalytic process. URA5 and URA3 genes, encoding orotate phosphoribosytransferase (OPRTase) and orotidine monophosphate decarboxylase (ODCase), respectively were successfully overexpressed in the industrial yeast strain. As a result, S .cerevisae pYX212-URA5/BJX12 exhibited the highest biocatalytic ability, in contrast with the original industrial yeast strain and S. cerevisae pYX212/BJX12 that overexpressed ODCase only. It indicated that the first step of UMP production from orotic acid is a rate-limiting step. Effects of cultivation for the recombinant strain and biocatalytic reaction conditions on UMP production were also investigated. Cultivating the cells in malt extract medium for 36 h in the exponential phase of growth is in favor of converting orotic acid to UMP. To acquire a higher UMP yield, the conditions of the whole cell biocatalytic reaction were optimized and up to 3.8 g l−1 UMP was produced in 24 h consequently. The yield was fivefold higher than the original UMP yield from the industrial yeast. In addition, the accumulation of 2.6 g l−1 UDP (uridne 5′-diphosphate) in the process demonstrated the possibility for further genetic manipulation: deleting the UMPK (Uridylate Kinase, catalyzing UMP–UDP).  相似文献   

19.
UMP pyrophosphorylase (EC 2.4.2.9, UMP:pyrophosphate phosphoribosyltransferase) was purified approximately 85-fold from exponentially growing cells of Tetrahymena pyriformis GL-7. It was found to have a molecular weight of 36,000, and was active over a broad pH range, with an optimum at 7.5. The enzyme exhibited a temperature optimum at 40 °C, above which irreversible inactivation began to occur. The apparent Km values for uracil and phosphoribosyl pyrophosphate (PRPP) were 0.4 and 6.9 m, respectively. The pyrophosphorylase exhibited a pyrimidine base specificity for uracil, although 5-fluorouracil was utilized by the enzyme. Neither cytosine, orotic acid, nor 6-azauracil competed with uracil for the enzyme or inhibited the production of UMP from uracil and PRPP. Although most triphosphates had little effect on pyrophosphorylase activity, UTP and dUTP, each at a concentration of 1 mm, depressed UMP formation by 86 and 59%, respectively. Thus, UMP pyrophosphorylase may be sensitive to feedback inhibition by the product of the pathway it initiates. UMP pyrophosphorylase specific activity in extracts of Tetrahymena grown in a medium containing uracil as the sole pyrimidine source was threefold higher than that in extracts of cells grown on uridine or UMP.  相似文献   

20.
Orotate phosphoribosyltransferase (OPRTase) and orotidylate decarboxylase (ODCase) have been found to be particulate in the kinetoplastid protozoan, Crithidia luciliae. Sucrose density centrifugation indicated that these two enzymes are associated with the glycosome, a microbody which appears to be unique to the Kinetoplastida and which contains many of the glycolytic enzymes. The particulate location of OPRTase and ODCase was considered to be favorable for channeling of orotidine-5'-monophosphate (OMP), the product of the first enzyme and substrate for the second. The degree of channeling was determined by double radioactively labeled experiments designed to determine the relative efficiency of endogenous and exogenous OMP as substrates of ODCase. The efficiency of channeling was high, with an approximate 50-fold preference for endogenous OMP. By comparison, the degree of channeling for the yeast enzymes, which are soluble and unassociated, was less than 2-fold. The OPRTase-ODCase enzyme complex was solubilized using Triton X-100 in the presence of dimethyl sulfoxide, glycerol, and phosphoribosyldiphosphate. The percentage recovery of the overall enzyme activity was approximately 20%. The degree of channeling was reduced by approximately 10-fold for the solubilized complex. The Km for OMP changed from 7.5 (+/- 1.8) to 1.6 (+/- 0.3) microM in the ODCase reaction. There was no alteration in the Km for orotate in the OPRTase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号