首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei N  Xin X  Du J  Li J 《Biosensors & bioelectronics》2011,26(8):3602-3607
The three-dimensionally ordered macroporous gold-nanoparticle-doped titanium dioxide (3DOM GTD) film was modified on the indium-tin oxide (ITO) electrode surface. Hemoglobin (Hb) has been successfully immobilized on the 3DOM GTD film and the fabrication process was characterized by Raman and UV-vis spectra. The results indicated that the Hb immobilized on the film retained its biological activity and the secondary structure of Hb was not destroyed. The direct electrochemistry and electrocatalysis of Hb immobilized on this film have been investigated. The Hb/3DOM GTD/ITO electrode exhibited two couples of redox peaks corresponding to the Hb intercalated in the mesopores and adsorbed on the external surface of the film with the formal potential of -0.20 and -0.48 V in 0.1M PBS (pH7.0), respectively. The Hb/3DOM GTD/ITO electrode exhibits an excellent eletrocatalytic activity, a wide linear range for H(2)O(2) from 5.0 μM to 1.0mM with a limit of detection of 0.6μM, high sensitivity (144.5 μA mM(-1)), good stability and reproducibility. Compared with the TiO(2) nanoneedles modified electrode, the GTD modified electrode has higher sensitivity and response peak current. The 3DOM GTD provided a good matrix for bioactive molecules immobilization, suggesting it has the potential use in the fields of H(2)O(2) biosensors.  相似文献   

2.
A new film for the fabrication of an unmediated H2O2 biosensor   总被引:2,自引:0,他引:2  
A novel and stable film made from polyethylene glycol (PEG) on pyrolytic graphite (PG) electrode was presented in this paper for incorporating horseradish peroxidase (HRP) to study the direct electrochemistry of the enzyme. In PEG film, HRP showed a thin-layer electrochemistry behavior. The apparent standard potential (E degrees ') was -0.379 V versus SCE at pH 7.2. Moreover, the PEG-HRP modified electrode exhibited excellent electrocatalytical response to the reduction of H2O2 with a calibration range between 2.0 x 10(-6) and 6.0 x 10(-4) M and a good linear relation from 2.0 x 10(-6) to 1.0 x 10(-4) M, on which an unmediated H2O2 biosensor was based. The detection limit of 6.7 x 10(-7) M was estimated when the signal-to-noise ratio was 3. The relative standard deviation (R.S.D.) was 4.7% for six successive determinations at a concentration of 4.0 x 10(-5) M. The apparent Michaelis-Menten constant (Km app) of the sensor was found to be 1.38 mM. Epinephrine, dopamine, and ascorbic acid did not interfere with the sensitive determination of H2O2.  相似文献   

3.
Direct electrochemistry and thermal stability of hemoglobin (Hb) immobilized on a nanometer-sized zirconium dioxide (ZrO2) modified pyrolytic graphite (PG) electrode were studied. The immobilized Hb displayed a couple of stable and well-defined redox peaks with an electron transfer rate constant of (7.90 +/- 0.93)s(-1) and a formal potential of -0.361 V (-0.12 V versus NHE) in 0.1M pH 7.0 PBS. Both nanometer-sized ZrO2 and dimethyl sulfoxide (DMSO) could accelerate the electron transfer between Hb and the electrode. Spectroscopy analysis of the Hb/ZrO2/DMSO film showed that the immobilized Hb could retain its natural structure. This modified electrode showed a high thermal stability up to 74 degrees C and an electrocatalytic activity to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator. The electrocatalytic response showed a linear dependence on the H2O2 concentration ranging from 1.5 to 30.2 microM with a detection limit of 0.14 microM at 3sigma. The apparent Michaelis-Menten constant KMapp for H2O2 sensor was estimated to be (0.31 +/- 0.02) mM, showing a high affinity.  相似文献   

4.
Hemoglobin Alberta has an amino acid substitution at position 101 (Glu----Gly), a residue involved in the alpha 1 beta 2 contact region of both the deoxy and oxy conformers of normal adult hemoglobin. Oxygen equilibrium measurements of stripped hemoglobin Alberta at 20 degrees C in the absence of phosphate revealed a high affinity (P50 = 0.75 mm Hg at pH 7), co-operative hemoglobin variant (n = 2.3 at pH 7) with a normal Bohr effect (- delta log P50/delta pH(7-8) = 0.65). The addition of inositol hexaphosphate resulted in a decrease in oxygen affinity (P50 = 8.2 mm Hg at pH 7), a slight increase in the value of n and an enhanced Bohr effect. Rapid mixing experiments reflected the equilibrium results. A rapid rate of carbon monoxide binding (l' = 7.0 X 10(5) M-1 S-1) and a slow rate of overall oxygen dissociation (k = 15 s-1) was seen at pH7 and 20 degrees C in the absence of phosphate. Under these experimental conditions the tetramer stability of liganded and unliganded hemoglobin Alberta was investigated by spectrophotometric kinetic techniques. The 4K4 value (the liganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta was found to be 0.83 X 10(-6) M compared to a 4K4 value for hemoglobin A of 2.3 X 10(-6) M, indicating that the Alberta tetramer was less dissociated into dimers than the tetramer of hemoglobin A. The values of 0K4 (the unliganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta and hemoglobin A were also measured and found to be 2.5 X 10(-8) M and 1.5 X 10(-10) M, respectively, demonstrating a greatly destabilized deoxyhemoglobin tetramer for hemoglobin Alberta compared to deoxyhemoglobin A. The functional and subunit dissociation properties of hemoglobin Alberta appear to be directly related to the dual role of the beta 101 residue in stabilizing the tetrameric form of the liganded structure, while concurrently destabilizing the unliganded tetramer molecule.  相似文献   

5.
The direct electrochemistry of hemoglobin (Hb) immobilized on a hexagonal mesoporous silica (HMS)-modified glassy carbon electrode was described. The interaction between Hb and the HMS was investigated using UV-Vis spectroscopy, FT-IR, and electrochemical methods. The direct electron transfer of the immobilized Hb exhibited two couples of redox peaks with the formal potentials of -0.037 and -0.232 V in 0.1 M (pH 7.0) PBS, respectively, which corresponded to its two immobilized states. The electrode reactions showed a surface-controlled process with a single proton transfer at the scan rate range from 20 to 200 mV/s. The immobilized Hb retained its biological activity well and displayed an excellent response to the reduction of both hydrogen peroxide (H2O2) and nitrate (NO2-). Its apparent Michaelis-Menten constants for H2O2 and NO2- were 12.3 and 49.3 microM, respectively, showing a good affinity. Based on the immobilization of Hb on the HMS and its direct electrochemistry, two novel biosensors for H2O2 and NO2- were presented. Under optimal conditions, the sensors could be used for the determination of H2O2 ranging from 0.4 to 6.0 microM and NO2- ranging from 0.2 to 3.8 microM. The detection limits were 1.86 x 10(-9) M and 6.11 x 10(-7) M at 3sigma, respectively. HMS provided a good matrix for protein immobilization and biosensor preparation.  相似文献   

6.
Hemoglobin Fannin-Lubbock was found in a 9-year-old Mexican-American female. The abnormal hemoglobin was detected as a fast-moving variant by electrophoresis on cellulose acetate at pH 8.4. Structural analysis indicated a substitution in the beta-chain of aspartic acid for glycine at position 119, a position involved in the alpha1beta1 contact of the hemoglobin tetramer. This contact between unlike chains is larger and undergoes a smaller shift during the process of oxygenation and deoxygenation that the alpha1beta2 contact (Perutz, M.F., Muirhead, H., Cox, J.M. and Goaman, L.C.G. (1968) Nature 219, 131-139). Mutations in this contact tend to cause slight or no changes in functional behavior. Apart from a mild anemia, the propositus did not exhibit any obvious clinical symptoms.  相似文献   

7.
Interaction of hemoglobin with hypochlorite (OCI-) induces changes in hemoglobin absorption spectra resulting in Soret band decrease and shift similar to those observed under the action of hydrogen peroxide (H2O2). Hemoglobin decomposition is accompanied by free iron release, as estimated by coloured iron-phenanthroline complex formation. The released iron is catalytically active: the incubation of hemoglobin with H2O2, OCl- or activated neutrophils increases the intensity of H2O2-dependent chemiluminescence of hemoglobin. In both reactions OCl- was more efficient than H2O2. These results show that hemoglobin can serve as a source of catalytically active ("free") iron in the reaction with OCl- and with H2O2.  相似文献   

8.
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H(2)O(2)) toxicity and protect cells against H(2)O(2) toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H(2)O(2) toxicity in cultured liver endothelial cells over a wide range of NO and H(2)O(2) concentrations. NO was generated by spermine NONOate (SpNO, 0.001-1 mM), H(2)O(2) was generated continuously by glucose/glucose oxidase (GOD, 20-300 U/l), or added as a bolus (200 microM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H(2)O(2)-induced cell death. SpNO concentrations >0.1 mM were injurious with low H(2)O(2) concentrations, but protective at high H(2)O(2) concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H(2)O(2) steady-state levels in line with inhibition of H(2)O(2) degradation. Thus, the overall effect of NO on H(2)O(2) toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H(2)O(2) levels and enhancement being predominant with high NO and low H(2)O(2) levels.  相似文献   

9.
O2 transport was examined by measuring the fractional saturation of concentrated hemoglobin solutions flowing through an artificial capillary that was approximately 27 micron in diameter and embedded in a silicone rubber film approximately 170 micron thick. The effects of pH, hemoglobin concentration, O2 tension, temperature, and organic phosphate were measured and analyzed quantitatively by a rigorous mathematical model that included the geometry of the capillary in the silicone film, parabolic flow velocity distributions inside the lumen, and cooperative O2 binding by hemoglobin. The rates of both oxygenation and deoxygenation were limited by diffusion and governed by the magnitude of the O2 gradient between the intracapillary fluid phase and the external gas space. In uptake experiments, O2 flux is determined primarily by the external O2 tension (16-160 mmHg in our experiments) because the internal O2 pressure is kept small due to chemical combination with hemoglobin. In release experiments, the external O2 tension is maintained at zero, and the transport rate is determined by the intracapillary partial pressure of O2 that is proportional to the O2 half-saturation pressure of hemoglobin value of the hemoglobin sample. As a result, factors that change the affinity of hemoglobin for O2, such as pH, temperature, and organic phosphate concentration, influence strongly the rate of O2 release but have little effect on the rate of O2 uptake. These properties are physiologically advantageous, since a decrease in pH or an increase in temperature during exercise increases both the rate and extent of deoxygenation while not altering the kinetics of oxygenation.  相似文献   

10.
He P  Hu N  Zhou G 《Biomacromolecules》2002,3(1):139-146
Layer-by-layer (PDDA/Hb)(n) films were assembled by alternate adsorption of positively charged poly(diallyldimethylammonium) (PDDA) and negatively charged hemoglobin (Hb) at pH 9.2 from their aqueous solutions on pyrolytic graphite electrodes and other substrates. The assembly process was monitored and confirmed by quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV). CVs of (PDDA/Hb)(n) films showed a pair of well-defined, nearly reversible peaks at about -0.34 V vs SCE at pH 7.0, characteristic of Hb heme Fe(III)/Fe(II) redox couple. Positions of Soret absorption band and infrared amide II band of Hb in (PDDA/Hb)(8) films suggest that Hb in the films keeps its secondary structure similar to its native state. The electrochemical parameters of (PDDA/Hb)(8) films were estimated by square wave voltammetry, and the thickness of the PDDA/Hb bilayer was estimated by QCM and scanning electron microscopy. Trichloroacetic acid and nitrite (NO(2)(-)) were catalytically reduced at (PDDA/Hb)(8) film electrodes. The electrochemical catalytic reactions of O(2) and H(2)O(2) on (PDDA/Hb)(8) films were also studied.  相似文献   

11.
Hemoglobin (Hb) Tarrant was detected by its electrophoretic mobility on cellulose acetate (pH 8.4) and citrate agar (pH 6.2). On cellulose acetate it moved as a band between hemoglobins F and S, and on citrate agar as a band at hemoglobin S. The test for solubility in 2 M phosphate buffer with Na2S2O4 was negative. The new variant has a substitution of asparagine for aspartic acid in position 126 of the alpha-chain, one of the sites involved in the alpha1beta1 contact. Furthermore, in deoxyhemoglobin aspartic acid 126 of each alpha chain also forms a non-covalent electrostatic salt bridge with arginine 141 of the corresponding alpha chain (Perutz, M. F. and Ten Eyck, L. F. (1972) Cold Spring Harbor Symp. Quant. Biol. 36, 295-310 and Perutz, M. F. (1970) Nature 228, 726-739). As a consequence of this substitution in hemoglobin Tarrant, the deoxy conformation or T state is destabilized because these two bridges cannot be formed. This condition is reflected in high oxygen affinity and low cooperativity.  相似文献   

12.
Direct electrochemical and electrocatalytic behaviors of hemoglobin (Hb) immobilized on carbon paste electrode (CPE) by a silica sol-gel film derived from tetraethylorthosilicate (TEOS) were investigated for the first time. Hb/sol-gel film modified electrodes showed a pair of well-defined and nearly reversible cyclic voltammetric peaks for Hb Fe(III)/Fe(II) redox couple at about -0.312 V (versus Ag/AgCl) in a pH 7.0 phosphate buffer. The formal potential of Hb heme Fe(III)/Fe(II) couple varied linearly with the increase of pH in the range of 5.0-10.0 with a slope of 49.44 mV pH(-1), which suggests that a proton transfer is accompanied with each electron transfer (ET) in the electrochemical reaction. The immobilized Hb displayed the features of peroxidase and gave excellent electrocatalytic performance to the reduction of O2, NO2(-) and H2O2. The calculated apparent Michaelis-Menten constant was 8.98 x 10(-4)M, which indicated that there was a large catalytic activity of Hb immobilized on CPE by sol-gel film toward H2O2. In comparison with other electrodes, the chemically modified electrodes, used in this direct electrochemical study of Hb, are easy to be fabricated and rather inexpensive. Consequently, the Hb/sol-gel film modified electrode provides a convenient approach to perform electrochemical research on this kind of proteins. It also has potential use in the fabrication of the third generation biosensors and bioreactors.  相似文献   

13.
The objective of this study was to investigate the efficiency of multifunctional poly(ethylene glycol)-based hemoglobin conjugates crosslinked with antioxidant enzymes for their ability to protect an oxygen carrier (hemoglobin) and insulin secreting islets from the combination of hypoxic and free radical stress under simulated transplantation conditions. In this study, RINm5F cells and isolated pancreatic islets were challenged with oxidants (H(2)O(2) or xanthine and xanthine oxidase) and incubated with conjugates (hemoglobin-hemoglobin or superoxide dismutase-catalase-hemoglobin) in normoxia (21% oxygen) or hypoxia (6% or 1% oxygen). Hemoglobin protection, intracellular free radical activity and cell viability in RINm5F cells measured by methemoglobin, dichlorofluorescein-diacetate, and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, respectively, showed that cells were better protected by conjugates containing antioxidant enzymes. Insulin secretion from islets and qualitative confocal evaluation of viability showed beta cells were protected by conjugates containing antioxidant enzymes when exposed to induced stress. Our study suggested that antioxidant enzymes play a significant role in hemoglobin protection and thus extended cell protection.  相似文献   

14.
Tao W  Pan D  Liu Y  Nie L  Yao S 《Analytical biochemistry》2005,338(2):332-340
A series of hybrid iron-cobalt hexacyanoferrate (FeCoHCF) films were electrodeposited on gold electrodes from solutions containing 6mM Fe(CN)(6)(3-) with different concentrations of Co(2+) and Fe(3+). FeCoHCF films deposited from solutions with different molar ratios of iron were studied by cyclic voltammetry, and their solid states were characterized by Fourier transform infrared spectroscopy. The kind of FeCoHCF film that deposited from a solution with a molar ratio of iron of 0.4 showed the largest response current to H(2)O(2) and was characterized by energy-dispersive X-ray spectroscopy. Therefore, the optimized FeCoHCF film was combined with nonconducting poly(o-aminophenol) (POAP) film that entrapped the hemoglobin (Hb) to construct hydrogen peroxide biosensor. The response current of the Hb/POAP/FeCoHCF/Au electrode (29.8 nA) was nearly 40 and was 1.5 times that of the Hb/POAP/Au (0.7 nA) and POAP/FeCoHCF/Au (20 nA) electrodes, respectively. The Michaelis-Menten constant of Hb in the Hb/POAP/FeCoHCF/Au film was 9.31 mM. These results show that the immobilized Hb in the Hb/POAP/FeCoHCF/Au film exhibits higher catalytic activity and larger response current to H(2)O(2) by the mediation of FeCoHCF. In addition, effects of applied potential, solution pH, and electroactive interferent on the response current of the Hb/POAP/FeCoHCF/Au electrode were investigated in detail.  相似文献   

15.
Using chitosan as an effective linker between CMK-3 and glassy carbon electrode surface, {Hb/CMK-3}n multilayer film-modified electrodes were constructed through layer-by-layer assembly. The morphology of thus-formed {Hb/CMK-3}n film was characterized by scanning electron micrographs, and the interaction of hemoglobin (Hb) with CMK-3 was studied by UV-vis spectroscopy and electrochemical methods. Under optimal conditions, {Hb/CMK-3}6 film showed a couple of stable and well-defined redox peaks at about -377 and -296 mV in pH 7.0 buffers. Furthermore, the {Hb/CMK-3}6 film displayed excellent electrocatalysis to the reduction of both H2O2 and O2. Based on thus-formed film and its direct electron transfer behavior, a novel biosensor was presented for the determination of H2O2 ranging from 1.2 to 57 muM with the detection limit of 0.6microM at S/N=3. CMK-3 provided a desirable matrix for protein immobilization and biosensor preparation.  相似文献   

16.
Membrane fluidity of human erythrocytes treated with H2O2 (1--20 mM) was studied using three kinds of fatty acid spin labels. A strongly immobilized signal appeared on exposure of erythrocytes to H2O2 but was not observed in either H2O2- or Fenton's reagent-treated ghosts or lipid vesicles prepared from H2O2-treated erythrocytes, indicating that the appearance of this signal necessitates the reaction of hemoglobin with H2O2 and is not due to lipid peroxidation. The ESR spectrum of maleimide-prelabeled erythrocytes showed an isotropic signal and the rotational correlation time (tau c) increased as the concentration of H2O2 was increased. Furthermore, maleimide labeling of H2O2-pretreated erythrocytes showed a strongly immobilized component, in addition to a weakly immobilized component. From the relative ratio of the signal intensity of hemoglobin and membrane proteins, it was found that label molecules bound predominantly to hemoglobin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of H2O2-treated erythrocytes demonstrated globin aggregation. Therefore, the changes in the ESR signal observed on H2O2 treatment may be due to some change in hemoglobin, such as globin aggregation or its binding to the membranes. The ESR spectrum of H2O2-treated erythrocytes at -196 degrees C is characterized by signals of nonheme ferric iron type (g equal to 4.3), low spin ferric iron, and free radical type at g equal to 2.00. At higher H2O2 concentrations, the ESR lines due to low spin ferric iron became broad and their peak heights decreased, compared with that at g equal to 2.00 or 4.3. These results indicate that oxidative stress such as decrease of membrane fluidity, lipid peroxidation, and globin aggregation in H2O2-treated erythrocytes is dependent on the reaction of hemoglobin with H2O2.  相似文献   

17.
Hemoglobin Atlanta, alpha 2 beta 2 75 Leu-Pro (E19), has been found in several members of three generations of a Caucasian family living in metropolitan Atlanta. The abnormal hemoglobin is one of the nine unstable variants in which either a leucyl or an alanyl residue is replaced by a prolyl residue. These substitutions have been observed in the B, E, F, and G helixes of the beta chain and in the H helix of the alpha-chain. Hemoglobin Atlanta heterozygotes are mildly affected by the presence of this unstable hemoglobin.  相似文献   

18.
The mitochondrial electron transport chain is a source of oxygen superoxide anion (O(2)(-)) that is dismutated to H(2)O(2). Although low levels of ROS are physiologically synthesized during respiration, their increase contributes to cell injury. Therefore, an efficient machinery for H(2)O(2) disposal is essential in mitochondria. In this study, the ability of brain mitochondria to acquire cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylserine (PS) in vitro through a fusion process was exploited to investigate lipid effects on ROS. MTT assay, oxygen consumption, and respiratory ratio indicated that the acquired phospholipids did not alter mitochondrial respiration and O(2)(-) production from succinate. However, in CL-enriched mitochondria, H(2)O(2) levels where 27% and 47% of control in the absence and in the presence of antimycin A, respectively, suggesting an increase in H(2)O(2) elimination. Concomitantly, cytochrome c (cyt c) was released outside mitochondria. Since free oxidized cyt c acquired peroxidase activity towards H(2)O(2) upon interaction with CL in vitro, a contribution of cyt c to H(2)O(2) disposal in mitochondria through CL conferred peroxidase activity is plausible. In this model, the accompanying CL peroxidation should weaken cyt c-CL interactions, favouring the detachment and release of the protein. Neither cyt c peroxidase activity was elicited by PS in vitro, nor cyt c release was observed in PS-enriched mitochondria, although H(2)O(2) levels were significantly decreased, suggesting a cyt c-independent role of PS in ROS metabolism in mitochondria.  相似文献   

19.
We are attempting to supply a new insight on interaction between Na(+)/K(+)-ATPase and H(2)O(2). We demonstrate that in vitro the Na(+)/K(+)-ATPase, a non heme-protein, is able to disproportionate H(2)O(2) catalatically into dioxygen and water, as well as C(40) catalase. By polarography, we quantify O(2) production and by Raman spectroscopy H(2)O(2) consumption. A comparative analysis of kinetics parameters relative to O(2) production shows that for Na(+)/K(+)-ATPase the affinity of the catalytic site able to transform H(2)O(2) into O(2) is twice weaker than that for C(40) catalase. It also shows that the molar activity for O(2) production is 300-fold weaker for ATPase than for catalase. Inhibitors, pH and GSH studies highlight the differences between the heme- and nonheme-proteins. Indeed, for C(40), NaN(3) is strongly inhibiting, but much less for ATPase. The pH range for the catalatic activity of ATPase is wide (6.5 to 8.5), while it is not for C(40) catalase (optimum at pH 8). The Na(+)/K(+)-ATPase catalatic activity is reduced in presence of glutathione, while it is not the case with C(40) catalase.  相似文献   

20.
In this study, magnetic core-shell Fe(3)O(4)@Al(2)O(3) nanoparticles (NPs) attached to the surface of a magnetic glassy carbon electrode (MGCE) were used as a functional interface to immobilize several heme proteins including hemoglobin (Hb), myoglobin (Mb) and horseradish peroxidase (HRP) for fabricating protein/Fe(3)O(4)@Al(2)O(3) film. Transmission electron microscope, UV-vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were used to characterize the films. With the advantages of the magnetism and the excellent biocompatibility of the Fe(3)O(4)@Al(2)O(3) NPs, the protein/Fe(3)O(4)@Al(2)O(3) film could be easily fabricated in the present of external magnetic field, and well retained the bioactivity of the immobilized proteins, hence dramatically facilitated direct electron transfer of heme proteins and excellent electrocatalytic behaviors towards H(2)O(2) were demonstrated. The presented system avoids the complex synthesis for protecting Fe(3)O(4) NPs, supplies a facile, low cost and universal way to immobilize proteins, and is promising for construction of third-generation biosensors and other bio-magnetic induction devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号