首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbamate kinase from Giardia lamblia is an essential enzyme for the survival of the organism. The enzyme catalyzes the final step in the arginine dihydrolase pathway converting ADP and carbamoyl phosphate to ATP and carbamate. We previously reported that disulfiram, a drug used to treat chronic alcoholism, inhibits G. lamblia CK and kills G. lamblia trophozoites in vitro at submicromolar IC50 values. Here, we examine the structural basis for G. lamblia CK inhibition of disulfiram and its analog, thiram, their activities against both metronidazole-susceptible and metronidazole-resistant G. lamblia isolates, and their efficacy in a mouse model of giardiasis. The crystal structure of G. lamblia CK soaked with disulfiram revealed that the compound thiocarbamoylated Cys-242, a residue located at the edge of the active site. The modified Cys-242 prevents a conformational transition of a loop adjacent to the ADP/ATP binding site, which is required for the stacking of Tyr-245 side chain against the adenine moiety, an interaction seen in the structure of G. lamblia CK in complex with AMP-PNP. Mass spectrometry coupled with trypsin digestion confirmed the selective covalent thiocarbamoylation of Cys-242 in solution. The Giardia viability studies in the metronidazole-resistant strain and the G. lamblia CK irreversible inactivation mechanism show that the thiuram compounds can circumvent the resistance mechanism that renders metronidazole ineffectiveness in drug resistance cases of giardiasis. Together, the studies suggest that G. lamblia CK is an attractive drug target for development of novel antigiardial therapies and that disulfiram, an FDA-approved drug, is a promising candidate for drug repurposing.  相似文献   

2.
3.
Giardia lamblia is a common enteric pathogen associated with diarrheal diseases. There are some reports of G. lamblia infection among different breeds of cattle in recent years worldwide. However, it is yet to know whether cattle in Jiangxi province, southeastern China is infected with G. lamblia. The objectives of the present study were to investigate the prevalence and examine the multilocus genotypes of G. lamblia in cattle in Jiangxi province. A total of 556 fecal samples were collected from 3 cattle breeds (dairy cattle, beef cattle, and buffalo) in Jiangxi province, and the prevalence and genotypes of G. lamblia were determined by the nested PCR amplification of the beta-giardin (bg) gene. A total of 52 samples (9.2%) were positive for G. lamblia. The highest prevalence of G. lamblia was detected in dairy cattle (20.0%), followed by that in beef cattle (6.4%), and meat buffalo (0.9%). Multilocus sequence typing of G. lamblia was performed based on sequences of the bg, triose phosphate isomerase and glutamate dehydrogenase loci, and 22, 42, and 52 samples were amplifiable, respectively, forming 15 MLGs. Moreover, one mixed G. lamblia infection (assemblages A and E) was found in the present study. Altogether, 6 novel assemblage E subtypes (E41*–E46*) were identified for the first time. These results not only provided baseline data for the control of G. lamblia infection in cattle in this southeastern province of China, but also enriched the molecular epidemiological data and genetic diversity of G. lamblia in cattle.  相似文献   

4.
Very little is known about the ability of the zooplankton grazer Daphnia pulicaria to reduce populations of Giardia lamblia cysts and Cryptosporidium parvum oocysts in surface waters. The potential for D. pulicaria to act as a biological filter of C. parvum and G. lamblia was tested under three grazing pressures (one, two, or four D. pulicaria grazers per 66 ml). (Oo)cysts (1 × 104 per 66 ml) were added to each grazing bottle along with the algal food Selenastrum capricornutum (6.6 × 104 cells per 66 ml) to stimulate normal grazing. Bottles were rotated (2 rpm) to prevent settling of (oo)cysts and algae for 24 h (a light:dark cycle of 16 h:8 h) at 20°C. The impact of D. pulicaria grazing on (oo)cysts was assessed by (i) (oo)cyst clearance rates, (ii) (oo)cyst viability, (iii) (oo)cyst excystation, and (iv) oocyst infectivity in cell culture. Two D. pulicaria grazers significantly decreased the total number of C. parvum oocysts by 52% and G. lamblia cysts by 44%. Furthermore, two D. pulicaria grazers significantly decreased C. parvum excystation and infectivity by 5% and 87%, respectively. Two D. pulicaria grazers significantly decreased the viability of G. lamblia cysts by 52%, but analysis of G. lamblia excystation was confounded by observed mechanical disruption of the cysts after grazing. No mechanical disruption of the C. parvum oocysts was observed, presumably due to their smaller size. The data provide strong evidence that zooplankton grazers have the potential to substantially decrease the population of infectious C. parvum and G. lamblia in freshwater ecosystems.  相似文献   

5.
The humoral immune response plays an important role in the clearance of Giardia lamblia. However, our knowledge about the specific antigens of G. lamblia that induce a protective immune response is limited. The purpose of this study was to identify and characterise the immunogenic proteins of G. lamblia in a mouse model. We generated monoclonal antibodies (moAbs) specific to G. lamblia (1B10, 2C9.D11, 3C10.E5, 3D10, 5G8.B5, 5F4, 4C7, 3C5 and 3C6) by fusing splenocytes derived from infected mice. Most of these moAbs recognised a band of ± 71 kDa (5G8 protein) and this protein was also recognised by serum from the infected mice. We found that the moAbs recognised conformational epitopes of the 5G8 protein and that this antigen is expressed on the cell surface and inside trophozoites. Additionally, antibodies specific to the 5G8 protein induced strong agglutination (> 70-90%) of trophozoites. We have thus identified a highly immunogenic antigen of G. lamblia that is recognised by the immune system of infected mice. In summary, this study describes the identification and partial characterisation of an immunogenic protein of G. lamblia. Additionally, we generated a panel of moAbs specific for this protein that will be useful for the biochemical and immunological characterisation of this immunologically interesting Giardia molecule.  相似文献   

6.
The α/β-tubulin heterodimer is the basic subunit of microtubules in eukaryotes. Polyclonal antibodies specific to recombinant α-tubulin of Giardia lamblia were made, and found effective as a probe to specifically detect G. lamblia by immunofluorescence assays. Nucleotide sequences of α-tubulin genes were compared between G. lamblia WB and GS strains, prototypes of assemblage A and assemblage B, respectively. A set of primers was designed and used to amplify a portion of the α-tubulin gene from G. lamblia. PCR-RFLP analysis of this α-tubulin PCR product successfully differentiated G. lamblia into 2 distinct groups, assemblages A and B. The results indicate that α-tubulin can be used as a molecular probe to detect G. lamblia.  相似文献   

7.
From a specialized cDNA library of Giardia lamblia, 20 snoRNA-like RNAs, including 16 box C/D sRNAs and four box H/ACA sRNAs, were first identified. The sRNAs were predicted to guide a total of 11 2′-O-methylation and four pseudouridylation sites on the G. lamblia rRNAs, respectively. By using primer extension assay, seven methylation sites were precisely mapped in the G. lamblia 16S rRNA, despite its high GC content. All of the sRNA genes locate on the small intergenic regions of the G. lamblia genome and seem to be independently transcribed from their own promoters. Particularly, a cluster composed of GlsR17 and GlsR18 genes is transcribed as a dicistronic precursor, implying a mechanism of endonuclease cleavage for the maturation of the two sRNAs. The systematic identification of the sRNAs in G. lamblia has provided valuable information about the characteristics of the two major families of small guide RNAs in one of the most primitive eukaryotes and would contribute to the understanding of the evolution of small non-messenger RNA genes from prokaryotes to eukaryotes.  相似文献   

8.
This study aimed to develop a multiplex-touchdown PCR method to simultaneously detect 3 species of protozoan parasites, i.e., Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of traveler’s diarrhea and are resistant to standard antimicrobial treatments. The target genes included the Cryptosporidium oocyst wall protein for C. parvum, Glutamate dehydrogenase for G. lamblia, and 18S ribosomal RNA (18S rRNA) for C. cayetanensis. The sizes of the amplified fragments were 555, 188, and 400 bps, respectively. The multiplex-touchdown PCR protocol using a primer mixture simultaneously detected protozoa in human stools, and the amplified gene was detected in >1×103 oocysts for C. parvum, >1×104 cysts for G. lamblia, and >1 copy of the 18S rRNA gene for C. cayetanensis. Taken together, our protocol convincingly demonstrated the ability to simultaneously detect C. parvum, G. lamblia, and C. cayetanenesis in stool samples.  相似文献   

9.
Giardia lamblia is a protozoan pathogen with distinct cytoskeletal structures, including median bodies and eight flagella. In this study, we examined components comprising G. lamblia flagella. Crude flagellar extracts were prepared from G. lamblia trophozoites, and analyzed by two-dimensional (2-D) gel electrophoresis. The 19 protein spots were analyzed by MALDI–TOF mass spectrometry, identifying ten metabolic enzymes, six distinct giardins, Giardia trophozoite antigen 1, translational initiation factor eIF-4A, and an extracellular signal-regulated kinase 2. Among the identified proteins, we studied α-11 giardin which belongs to a group of cytoskeletal proteins specific to Giardia. Western blot analysis and real-time PCR indicated that expression of α-11 giardin is not significantly increased during encystation of G. lamblia. Immunofluorescence assays using anti-α-11 giardin antibodies revealed that α-11 giardin protein mainly localized to the plasma membranes and basal bodies of the anterior flagella of G. lamblia trophozoites, suggesting that α-11 giardin is a genuine component of the G. lamblia cytoskeleton.  相似文献   

10.
The protozoan pathogens Giardia lamblia and Cryptosporidium parvum are major causes of waterborne enteric disease throughout the world. Improved detection methods that are very sensitive and rapid are urgently needed. This is especially the case for analysis of environmental water samples in which the densities of Giardia and Cryptosporidium are very low. Primers and TaqMan probes based on the β-giardin gene of G. lamblia and the COWP gene of C. parvum were developed and used to detect DNA concentrations over a range of 7 orders of magnitude. It was possible to detect DNA to the equivalent of a single cyst of G. lamblia and one oocyst of C. parvum. A multiplex real-time PCR (qPCR) assay for simultaneous detection of G. lamblia and C. parvum resulted in comparable levels of detection. Comparison of DNA extraction methodologies to maximize DNA yield from cysts and oocysts determined that a combination of freeze-thaw, sonication, and purification using the DNeasy kit (Qiagen) provided a highly efficient method. Sampling of four environmental water bodies revealed variation in qPCR inhibitors in 2-liter concentrates. A methodology for dealing with qPCR inhibitors that involved the use of Chelex 100 and PVP 360 was developed. It was possible to detect and quantify G. lamblia in sewage using qPCR when applying the procedure for extraction of DNA from 1-liter sewage samples. Numbers obtained from the qPCR assay were comparable to those obtained with immunofluorescence microscopy. The qPCR analysis revealed both assemblage A and assemblage B genotypes of G. lamblia in the sewage. No Cryptosporidium was detected in these samples by either method.  相似文献   

11.
Giardia lamblia, a protozoan causing diarrheal outbreaks, is one of the main pathogens monitored in developed countries. Immunoscreening of G. lamblia expression library using the monoclonal antibodies (mAb) against G. lamblia, identified a subset of antigenic proteins in this protozoan, which are proteins belonging to GHSP (Giardia head-stalk protein), GHSP115, GHSP138, and GHSP180. In order to map the epitope region of GHSP115, the corresponding open reading frame was dissected into three parts and expressed as recombinant proteins with histidine tags. Western blot analysis of these recombinant proteins with mAbs reacting with GHSP115 indicated that one-third of the C-terminus of GHSP115 showed immunoreactivity with the mAb. Intracellular location of GHSP115 was examined both in trophozoites and encysting cells of G. lamblia by an immunofluorescence assay, indicating that location of GHSP115 varies during encystation. These results suggest that GHSP115 is an abundant and antigenic protein, which is differentially localized during life cycle of G. lamblia.  相似文献   

12.
Giardia lamblia is recognized as one of the most prevalent parasites in dogs. The present study aimed to establish a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of G. lamblia from dogs. The fecal samples were collected and prepared for microscopic analysis, and then the genomic DNA was extracted directly from purified cysts. The concentration of DNA samples of G. lamblia were diluted by 10-fold serially ranging from 10-1 to 10-5 ng/µl for LAMP and PCR assays. The LAMP assay allows the amplification to be finished within 60 min under isothermal conditions of 63℃ by employing 6 oligonucleotide primers designed based on G. lamblia elongation factor 1 alpha (EF1α) gene sequence. Our tests showed that the specific amplification products were obtained only with G. lamblia, while no amplification products were detected with DNA of other related protozoans. Sensitivity evaluation indicated that the LAMP assay was sensitive 10 times more than PCR. It is concluded that LAMP is a rapid, highly sensitive and specific DNA amplification technique for detection of G. lamblia, which has implications for effective control and prevention of giardiasis.  相似文献   

13.
Giardia lamblia is a protozoan parasite that causes widespread gastrointestinal illness. Drugs to treat giardiasis are limited, but efforts to discover new anti-giardial compounds are constrained by the lack of a facile system for cell culture and inhibitor testing. We achieved robust and reproducible growth of G. lamblia in 384-well tissue culture plates in a modified TYI-S-33 medium. A high throughput assay for the screening of potential anti-giardial compounds was developed utilizing the WB strain of G. lamblia and automated optical detection of parasites after growth with tested inhibitors. We screened a library of 1600 known bioactive molecules and identified 12 compounds that inhibited growth of G. lamblia at low- or sub-micromolar concentrations. Our high throughput assay should facilitate evaluation of available chemical libraries for novel drugs to treat giardiasis.  相似文献   

14.
Giardia lamblia is a pathogenic unicellular eukaryotic parasite that causes giardiasis. Its genome encodes the canonical histones H2A, H2B, H3, and H4, which share low amino acid sequence identity with their human orthologues. We determined the structure of the G. lamblia nucleosome core particle (NCP) at 3.6 Å resolution by cryo-electron microscopy. G. lamblia histones form a characteristic NCP, in which the visible 125 base-pair region of the DNA is wrapped in a left-handed supercoil. The acidic patch on the G. lamblia octamer is deeper, due to an insertion extending the H2B α1 helix and L1 loop, and thus cannot bind the LANA acidic patch binding peptide. The DNA and histone regions near the DNA entry-exit sites could not be assigned, suggesting that these regions are asymmetrically flexible in the G. lamblia NCP. Characterization by thermal unfolding in solution revealed that both the H2A–H2B and DNA association with the G. lamblia H3–H4 were weaker than those for human H3–H4. These results demonstrate the uniformity of the histone octamer as the organizing platform for eukaryotic chromatin, but also illustrate the unrecognized capability for large scale sequence variations that enable the adaptability of histone octamer surfaces and confer internal stability.  相似文献   

15.
Giardia lamblia is a protozoan parasite with many characteristics common among eukaryotic cells, but lacking other features found in most eukaryotes. Cardiolipin is a phospholipid located exclusively in energy transducing membranes and it was identified in mitochondria, bacteria, hydrogenosomes and chloroplasts. In eukaryotes, cardiolipin is the only lipid that is synthesized in the mitochondria. Biochemical procedures (TLC, HPLC) and fluorescent tools (NAO) were applied in order to search for cardiolipin in G. lamblia. In addition, BLAST searches were used to find homologs of enzymes that participate in the cardiolipin synthesis. Cardiolipin synthase was searched in the Giardia genome, using Saccharomyces cerevisiae and Mycoplasma penetrans sequences as bait. However, a good match to G. lamblia related proteins was not found. Here we show that mitosomes of G. lamblia apparently do not contain cardiolipin, which raises the discussion for its endosymbiotic origin and for the previous proposal that Giardia mitosomes are modified mitochondria.  相似文献   

16.
17.
Giardia duodenalis (syn. lamblia; syn. intestinalis) susceptibility testing is not routinely performed because the classical culture methods are very time-consuming and laborious. We developed a novel flow cytometry (FC) assay to evaluate the susceptibility of G. duodenalis trophozoites to metronidazole (MTZ). Different concentrations of MTZ were added to cultures of trophozoites (10 5 /mL) and the cultures were incubated for different periods. The 50% inhibitory concentration was calculated and propidium iodide (PI) was used to quantify the number of dead cells. After treatment, PI-positive trophozoites increased with increasing drug concentration and exposure time. An excellent correlation was found between FC and the classical method. A novel, accurate and reliable method is now available to evaluate G. duodenalis viability.  相似文献   

18.
Although Giardia lamblia trophozoites are unable to carry out de novo phospholipid synthesis, they can assemble complex glycophospholipids from simple lipids and fatty acids acquired from the host. Previously, we have reported that G. lamblia synthesizes GP49, an invariant surface antigen with a glycosylphosphatidylinositol (GPI) anchor. It is therefore possible that myo-inositol (Ins), phosphatidylinositol (PI) and other GPI precursors are obtained from the dietary products of the human small intestine, where the trophozoites colonize. In this report, we have investigated the role of exogenous Ins and PI on GPI anchor synthesis by G. lamblia. The results demonstrate that [3H]Ins and PI internalized by trophozoites, metabolically transformed into GlcN(acyl)-PI and downstream GPI molecules. Further investigations suggest that G. lamblia expresses cytidine monophosphate (CMP)-dependent (Mg2+-stimulated) and independent (Mn2+-stimulated) inositol headgroup exchange enzymes, which are responsible for exchanging free Ins with cellular PI. We observed that 3-deoxy-3-fluoro-D-myo-inositol (3-F-Ins) and 1-deoxy-1-F-scyllo-Ins (1-F-scyllo-Ins), which are considered potent inhibitors of Mn2+-stimulated headgroup exchange enzyme, inhibited the incorporation of [3H]Ins into PI and GPI molecules significantly, suggesting that CMP-independent (Mn2+-stimulated) exchange enzyme may be important for these reactions. However, 3-F-Ins and 1-F-scyllo-Ins were not effective in blocking the incorporation of exogenously supplied [3H]PI into GPI glycolipids. Thus, it can be concluded that G. lamblia can use exogenously supplied [3H]PI and [3H]Ins to synthesize GPI glycolipids of GP49; while PI is directly incorporated into GPI molecules, free Ins is first converted into PI by headgroup exchange enzymes, and this newly formed PI participates in GPI anchor synthesis.  相似文献   

19.

Background

Giardia lamblia is a pathogen of humans and other vertebrates. The synthesis of glycogen and of structural oligo and polysaccharides critically determine the parasite's capacity for survival and pathogenicity. These characteristics establish that UDP-glucose is a relevant metabolite, as it is a main substrate to initiate varied carbohydrate metabolic routes.

Results

Herein, we report the molecular cloning of the gene encoding UDP-glucose pyrophosphorylase from genomic DNA of G. lamblia, followed by its heterologous expression in Escherichia coli. The purified recombinant enzyme was characterized to have a monomeric structure. Glucose-1-phosphate and UTP were preferred substrates, but the enzyme also used galactose-1-phosphate and TTP. The catalytic efficiency to synthesize UDP-galactose was significant. Oxidation by physiological compounds (hydrogen peroxide and nitric oxide) inactivated the enzyme and the process was reverted after reduction by cysteine and thioredoxin. UDP-N-acetyl-glucosamine pyrophosphorylase, the other UTP-related enzyme in the parasite, neither used galactose-1-phosphate nor was affected by redox modification.

Conclusions

Our results suggest that in G. lamblia the UDP-glucose pyrophosphorylase is regulated by oxido-reduction mechanism. The enzyme exhibits the ability to synthesize UDP-glucose and UDP-galactose and it plays a key role providing substrates to glycosyl transferases that produce oligo and polysaccharides.

General significance

The characterization of the G. lamblia UDP-glucose pyrophosphorylase reinforces the view that in protozoa this enzyme is regulated by a redox mechanism. As well, we propose a new pathway for UDP-galactose production mediated by the promiscuous UDP-glucose pyrophosphorylase of this organism.  相似文献   

20.
Nested PCR was performed on individually isolated Giardia lamblia cysts in replicates of 50 for sets of 1, 2, 3, 4, 5, 7, and 10 cysts. Amplification ranged from 80% for 1 cyst to 100% for 10 cysts. The results suggest that nested PCR is well adapted for G. lamblia single-cyst detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号