首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cnidarians, in contrast with bilaterians, are generally considered to exhibit radial symmetry around a single body axis (oral-aboral) throughout their life-cycles. We have investigated how the oral-aboral axis is established in the hydrozoan jellyfish Podocoryne carnea. Vital labeling experiments showed that the oral end of the blastula derives from the animal pole region of the egg as has been demonstrated for other cnidarian species. Gastrulation is restricted to the oral pole such that the oral 20% of blastula cells give rise to endoderm. Unexpectedly, bisection experiments at the 8-cell stage showed that animal regions are able to develop into normally polarized larvae, but that vegetal (aboral) blastomeres completely fail to develop endoderm or to elongate. These vegetal-derived larvae also failed to polarize, as indicated by a lack of oral-specific RFamide-positive nerve cells and a disorganized tyrosinated tubulin-positive nerve net. A different result was obtained following bisection of the late blastula stage: aboral halves still lacked the capacity to develop endoderm but retained features of axial polarity including elongation of the larva and directional swimming. These results demonstrate for the first time in a cnidarian the presence of localized determinants responsible for axis determination and endoderm formation at the animal pole of the egg. They also show that axial polarity and endoderm formation are controlled by separable pathways after the blastula stage.  相似文献   

2.
A specific set of founder cells uniquely gives rise to the oral and aboral ectoderms in the regularly developing sea urchin Strongylocentrotus purpuratus. We showed earlier that the polar No and Na (animal oral and animal aboral) blastomeres are specified by third cleavage, while the respective oral and aboral lineage contributions of the left and right NL (animal lateral) blastomeres have not yet segregated from one another at third cleavage. Here we demonstrate by iontophoretic injection of lysyl rhodamine dextran lineage tracer that segregation of oral vs aboral cell fates in the lineages of the NL blastomeres has still not occurred by fourth cleavage, but at fifth cleavage there arise from the NL sublineages founder cells whose progeny contribute exclusively to the aboral ectoderm. The sister cells of these fifth cleavage blastomeres are founder cells that contribute exclusively to oral structures. The aboral ectoderm tracts to which NL derivatives give rise occupy lateral regions of the anterior aboral ectoderm, while the oral structures deriving from the NL blastomeres are the lateral sectors of the ciliated bands. The cells of the ciliated bands do not express aboral ectoderm markers and are considered to constitute the border of the oral region. With these new findings we complete our knowledge of the origins, identities, and fates of the 11 founder cells, the progeny of which exclusively give rise to the aboral ectoderm, and of the 5 founder cells, the progeny of which exclusively produce the oral ectoderm and its derivatives.  相似文献   

3.
To elucidate factors involved in the oral-aboral axis specification, several observations and experiments were undertaken using the sand dollar Scaphechinus mirabilis. Unlike in Strongylcentrotus purpuratus, localization of mitochondria was not detected in unfertilized eggs. After fertilization, however, the bulk of mitochondria became localized to the opposite side of sperm entry. The first cleavage divided this mitochondrial cluster into daughter blastomeres. On the other hand, a second cleavage produced daughter blastomeres containing quite different amounts of mitochondria. To know whether such mitochondrial localization affects the oral-aboral axis specification, 4-cell-stage embryos were separated along the second cleavage plane. Although both half embryos developed into morphologically normal plutei, some differences, such as the number of pigment cells, were noticed between the siblings. In contrast, cell tracing revealed that the first cleavage separated the oral from the aboral part in most cases, indicating that the unequal distribution of mitochondria is not critical for the oral-aboral axis specification. Further, stained and non-stained half embryo fragments were combined. Such combined embryos developed into normal plutei with a single oral-aboral axis. The plane dividing labeled and non-labeled parts were incident, oblique or perpendicular to the median plane of the combined embryo, and the appearance frequencies of those labeling patterns were similar to those obtained by cell tracing in intact embryos. Interestingly, the half fragments derived from embryos inseminated earlier showed a tendency to form the oral part. These suggest that several factors as well as the localized cytoplasmic components would be involved in the specification process of oral-aboral axis.  相似文献   

4.
To elucidate a relationship between early cleavage planes and dorso-ventral (DV)-axis of sea urchin embryos, a fluorescent dye, Lucifer Yellow CH, was iontophoretically introduced into one blastomere at the 2-cell stage, and the location of the progeny cells was determined in the half-labeled prism larvae by examining the embryos from the animal pole. The boundary plane which divides the embryonic tissue into the labeled and nonlabeled parts was (1) coincident with, (2) perpendicular to, or (3) obliquely crossing the larval plane of bilateral symmetry. The oblique boundaries took only two angles mutually symmetrical with regard to the DV-axis of embryos. Combining these labeling patterns, the tissue of prism larvae could be divided into 8 sectors around the animal-vegetal axis. When the 2-cell stage embryos with different diameters of sister blastomeres were labeled with the dye, one end of the boundary plane was again found at one of the 8 boundary points noticed in equally cleaved embryos, while the other was observed to fall in the middle of a sector. These results indicate that the DV-axis of the embryo is established according to the spatial arrangement of blastomeres during the 5-6th cleavage stages when blastomeres align in 8 rows in meridional direction. It was also suggested that intercellular communication takes part in the determination of the fate of individual founder blastomeres during the two subsequent cleavages, i.e., 7-8th cleavage stages.  相似文献   

5.
Sea urchin primary mesenchyme cells (PMCs) ingress into the blastocoel during an epithelial-to-mesenchymal transition (EMT), migrate along the blastocoelar wall for a period of time, and then settle into a subequatorial ring to form the larval skeleton. Fluorescent-marked blastomeres alone, or in combination with blastomere recombination, were used to track the position of PMCs during the early phases of this movement. Micromeres expressing Golgi-tethered GFP (galtase-GFP) were transplanted onto TRITC-stained hosts (in place of the endogenous micromere) to observe the progeny of a single micromere. Galtase-GFP as a Golgi marker is not transferred between PMCs when the syncytium forms. Thus, the position of cells can be followed relative to beginning position for longer periods than previously reported. The PMC progeny of a single micromere do not disperse upon ingression, but instead remain in a closely associated cluster. Generally, progeny of a single micromere remain in the quadrant of origin. In total, greater than approximately 94% of labeled PMCs remain within the local region of ingression. By contrast, when a transplanted micromere is placed at the vegetal plate after removing all 4 host micromeres, the resultant PMCs ingress and migrate into all 4 quadrants. Similarly, if 1 blastomere is injected at the 2-cell stage, and later the 2 unlabeled micromeres are removed at the 16-cell stage, the remaining PMCs ingress into all 4 quadrants of the vegetal plate. We conclude that the normal restriction of PMCs to a quadrant is due to mechanical constraint from other micromere-PMCs. If a labeled micromere is placed ectopically at the macromere/mesomere boundary, the PMC progeny ingress ectopically and migrate longitudinally along the animal-vegetal axis only. Injection of galtase-GFP into one blastomere at the 4-cell stage shows a 2-step pattern of localization. At late mesenchyme blastula and early gastrula stages, greater than 90% of GFP-expressing PMCs remain in the injected quadrant, while at mid- to late-gastrula stage and beyond, more PMCs are found outside the injected quadrant. The migration that sets up the asymmetry of the larval skeleton first occurs around mid- to late-gastrula stages, when some PMCs from an aboral quadrant migrate to the adjacent oral quadrant. In all, these data combined with previous data suggest that freshly ingressed PMCs migrate along a longitudinal path toward the animal pole and back toward the vegetal pole. Beginning at mid- to late-gastrula stage, PMCs utilize oral-aboral cues from the ectoderm for the first time. At this time, some aboral PMCs migrate into the adjacent oral quadrant to assist in the formation of the ventrolateral cluster.  相似文献   

6.
7.
Previous fate mapping studies as well as the culture of isolated blastomeres have revealed that the dorsoventral axis is specified as early as the 2-cell stage in the embryos of the direct developing echinoid, Heliocidaris erythrogramma. Normally, the first cleavage plane includes the animal-vegetal axis and bisects the embryo between future dorsal and ventral halves. Experiments were performed to establish whether the dorsoventral axis is set up prior to the first cleavage division in H. erythrogramma. Eggs were elongated and fertilized in silicone tubes of a small diameter in order to orient the cleavage spindle and thus the first plane of cell division. Following first cleavage, one of the two resulting blastomeres was then microinjected with a fluorescent cell lineage tracer dye. Fate maps were made after culturing these embryos to larval stages. The results indicate that the first cleavage division can be made to occur at virtually any angle relative to the animal-vegetal and dorsoventral axes. Therefore, the dorsoventral axis is specified prior to first cleavage. We argue that this axis resides in the unfertilized oocyte rather than being set up as a consequence of fertilization.  相似文献   

8.
Ctenophores are marine invertebrates that develop rapidly and directly into juvenile adults. They are likely to be the simplest metazoans possessing definitive muscle cells and are possibly the sister group to the Bilateria. All ctenophore embryos display a highly stereotyped, phylum-specific pattern of development in which every cell can be identified by its lineage history. We generated a cell lineage fate map for Mnemiopsis leidyi by injecting fluorescent lineage tracers into individual blastomeres up through the 60-cell stage. The adult ctenophore body plan is composed of four nearly identical quadrants organized along the oral-aboral axis. Each of the four quadrants is derived largely from one cell of the four-cell-stage embryo. At the eight-cell stage each quadrant contains a single E ("end") and M ("middle") blastomere. Subsequently, micromeres are formed first at the aboral pole and later at the oral pole. The ctene rows, apical organ, and tentacle apparatus are complex structures that are generated by both E and M blastomere lineages from all four quadrants. All muscle cells are derived from micromeres born at the oral pole of endomesodermal precursors (2M and 3E macromeres). While the development of the four quadrants is similar, diagonally opposed quadrants share more similarities than adjacent quadrants. Adult ctenophores possess two diagonally opposed endodermal anal canals that open at the base of the apical organ. These two structures are derived from the two diagonally opposed 2M/ macromeres. The two opposing 2M/ macromeres generated a unique set of circumpharyngeal muscle cells, but do not contribute to the anal canals. No other lineages displayed such diagonal asymmetries. Clones from each blastomere yielded regular, but not completely invariant patterns of descendents. Ectodermal descendents normally, but not always, remained within their corresponding quadrants. On the other hand, endodermal and mesodermal progeny dispersed throughout the body. The variability in the exact complements of adult structures, along with previously published cell deletion experiments, demonstrates that cell interactions are required for normal cell fate determination. Ctenophore embryos, like those of many bilaterian phyla (e.g., spiralians, nematodes, and echinoids), display a highly stereotyped cleavage program in which some, but not all, blastomeres are determined at the time of their birth. The results suggest that mesodermal tissues originally evolved from endoderm tissue.  相似文献   

9.
Interest in establishing the basis of left/right asymmetry during embryogenesis has burgeoned in recent years. Relevant studies in mammals, focused largely on the mouse, have revealed involvement of a variety of genes that are common to the process in other animals. In the mouse, lateral differences in gene expression are first evident late in gastrulation when directional rotation of nodal cilia has been implicated in effecting the normally very strong bias in handedness. Reconstructing cleavage stages with correspondingly positioned blastomeres from appropriate numbers of conceptuses with similar division planes provides a way of testing whether they differ in potency without the confounding effects of reduced cell number. In a study using this strategy, 4-cell stage conceptuses reconstructed from blastomeres produced by equatorial as opposed to meridional second cleavage were found to be compromised in their ability to support normal development. Here, in more refined reconstructions undertaken at both the 4- and 8-cell stage, no significant impairment of development to the 9th or 12th day of gestation was found for products of equatorial second cleavage or their 8-cell stage progeny. Most surprisingly, however, a significant increase in reversal of the direction of axial rotation was found specifically among fetuses developing from conceptuses reconstructed from 8-cell stage progeny of products of equatorial second cleavage. Hence, manipulations during early cleavage some 6 days before fetal asymmetries are first evident can perturb the normally very strong bias in specification of a facet of left-right asymmetry.  相似文献   

10.
In the sea urchin embryo, the oral-aboral axis is specified after fertilization by mechanisms that are largely unknown. We report that early sea urchin embryos express Nodal and Antivin in the presumptive oral ectoderm and demonstrate that these genes control formation of the oral-aboral axis. Overexpression of nodal converted the whole ectoderm into oral ectoderm and induced ectopic expression of the orally expressed genes goosecoid, brachyury, BMP2/4, and antivin. Conversely, when the function of Nodal was blocked, by injection of an antisense Morpholino oligonucleotide or by injection of antivin mRNA, neither the oral nor the aboral ectoderm were specified. Injection of nodal mRNA into Nodal-deficient embryos induced an oral-aboral axis in a largely non-cell-autonomous manner. These observations suggest that the mechanisms responsible for patterning the oral-aboral axis of the sea urchin embryo may share similarities with mechanisms that pattern the dorsoventral axis of other deuterostomes.  相似文献   

11.
12.
Two populations of blastomeres become positionally distinct during fourth cleavage in the mouse embryo; the inner cells become enclosed within the embryo and the outer cells form the enclosing layer. The segregation of these two cell populations is important for later development, because it represents the initial step in the divergence of placental and fetal lineages. The mechanism by which the inner cells become allocated has been thought to involve the oriented division of polarized 8-cell blastomeres, but this has never been examined in the intact embryo. By using the technique of time-lapse cinemicrography, we have been able for the first time to directly examine the division planes of 8-cell blastomeres during fourth cleavage, and find that there are three, rather than two, major division plane orientations; anticlinal (perpendicular to the outer surface of the blastomere), periclinal (parallel to the outer surface of the blastomere), and oblique (at an angle between the other two). The observed frequencies of each type of division plane orientation provide evidence that the inner cells of the morula must derive from oriented division of 8-cell blastomeres, in accordance with the polarization hypothesis. Analysis of fourth cleavage division plane orientation with respect to either lineage or division order reveals that it is not associated with lineage from either the 2- or the 4-cell stage, but has a slight statistical association with fourth cleavage division order. The lack of association between division plane orientation and lineage supports the prediction that packing patterns and intercellular interactions within the 8-cell embryo during compaction play a role in determining fourth cleavage division plane orientation and thus, the positional fate of the daughter 16-cell blastomeres.  相似文献   

13.
Nodal is a key player in the process regulating oral–aboral axis formation in the sea urchin embryo. Expressed early within an oral organizing centre, it is required to specify both the oral and aboral ectoderm territories by driving an oral–aboral gene regulatory network. A model for oral–aboral axis specification has been proposed relying on the self activation of Nodal and the diffusion of the long-range antagonist Lefty resulting in a sharp restriction of Nodal activity within the oral field. Here, we describe the expression pattern of lefty and analyse its function in the process of secondary axis formation. lefty expression starts at the 128-cell stage immediately after that of nodal, is rapidly restricted to the presumptive oral ectoderm then shifted toward the right side after gastrulation. Consistently with previous work, neither the oral nor the aboral ectoderm are specified in embryos in which Lefty is overexpressed. Conversely, when Lefty's function is blocked, most of the ectoderm is converted into oral ectoderm through ectopic expression of nodal. Reintroducing lefty mRNA in a restricted territory of Lefty depleted embryos caused a dose-dependent effect on nodal expression. Remarkably, injection of lefty mRNA into one blastomere at the 8-cell stage in Lefty depleted embryos blocked nodal expression in the whole ectoderm consistent with the highly diffusible character of Lefty in other models. Taken together, these results demonstrate that Lefty is essential for oral–aboral axis formation and suggest that Lefty acts as a long-range inhibitor of Nodal signalling in the sea urchin embryo.  相似文献   

14.
The process of cell polarization in mouse 8-cell embryos includes the formation of a polar cluster of cytoplasmic endocytotic organelles (endosomes) subjacent to an apical surface pole of microvilli. A similar polar morphology, supplemented by basally localized secondary lysosomes, is evident following division to the 16-cell stage in outside blastomeres, precursors of the trophectodermal lineage. The roles of microfilaments and microtubules in generating and stabilizing endocytotic and surface features of polarity (visualized by horseradish peroxidase incubation and indirect immunofluorescence labeling, respectively) have been evaluated by exposure of 8- and 16-cell embryos and 8-cell couplets to drugs (cytochalasin D, colcemid, nocodazole) that disrupt the cytoskeleton. The generation of endocytotic polarity is dependent upon intact microtubules and microfilaments, but the newly established endocytotic pole in blastomeres from compacted 8-cell embryos appears to be stabilized exclusively by microtubules. Polarized endocytotic organelles at the 16-cell stage are more resistant to drug treatment than at the 8-cell stage (probably due to microfilament interactions) indicating a maturation phase in the polar cell lineage. Microtubules are also responsible for the orientation of endocytotic clusters along the cell's axis of polarity. In contrast, the generation and stability of polarity at the cell surface appears relatively independent of cytoskeletal integrity. The results are discussed in relation to the mechanisms that may control the development and stabilization of polarization during cleavage.  相似文献   

15.
This study defines the time period during which the cellular components that specify comb plates and photocytes become localized in different parts of blastomeres prior to their segregation to separate daughter cells. At the two-cell stage the factors which specify comb plates are localized at the aboral pole of the blastomeres. There is not a significant localization of the factors which specify comb plates and photocytes along the tentacular axis of the embryo. At the four-cell stage, the factors which specify comb plates become localized at one end of the tentacular axis of the blastomeres; however, the factors which specify photocytes have not yet become localized. At the eight-cell stage, the factors which specify these two cell types are segregated to different blastomeres.The role of cleavage in setting up these localized regions of developmental potential has been studied by reversibly inhibiting selected cleavages. After the first division, the pattern of cleavage that follows a period of cleavage inhibition corresponds to the pattern occurring in untreated embryos that began development at the same time. This situation is similar to the “clock” system, which controls many aspects of the pattern of cleavage in sea urchin embryos. The extent to which the factors that specify comb plates and photocytes become localized in a given region of a blastomere is correlated with the kind of cleavage which occurs after a block. Most of the activity involved in localizing developmental potential takes place during cleavage.  相似文献   

16.
The pattern of cleavage was examined during second and third furrowing of the rabbit egg. Two-cell eggs, collected just prior to onset of second cleavage, were continuously observed in a culture chamber, which was kept at 37 degrees C. Semi-cinematographic techniques were used to photograph progressive stages of cleavage. It was demonstrated that the pattern of cleavage in the rabbit differs from that in the sea urchin, because the blastomeres at the 4-cell stage are arranged crosswise in the former, while they are situated next to each other in the latter. The crosswise arrangement of the blastomeres in the rabbit at the 4-cell stage is a consequence of a 90 degree rotation of the polar axis in one hemisphere of the egg. Subsequently, due to the rotation of the original polar axis in one hemisphere, the third cleavage plane through one half of the egg is transverse to the third cleavage plane through the other half. Evidence is provided to show that the cross wise configuration of blastomeres at the 4-cell stage occurs in other eutherian mammals. It is proposed that this rotational cleavage pattern be recognized as distinct from those of radial, spiral and bilateral.  相似文献   

17.
The process of embryogenesis is described for the inarticulate brachiopod Discinisca strigata of the family Discinidae. A fate map has been constructed for the early embryo. The animal half of the egg forms the dorsal ectoderm of the apical and mantle lobes. The vegetal half forms mesoderm and endoderm and is the site of gastrulation; it also forms the ectoderm of the ventral regions of the apical and mantle lobes of the larva. The plane of the first cleavage goes through the animal-vegetal axis of the egg along the future plane of bilateral symmetry of the larva. The timing of regional specification in these embryos was examined by isolating animal, vegetal, or lateral regions at different times from the 2-cell stage through gastrulation. Animal halves isolated at the 8-cell and blastula stages formed an epithelial vesicle and did not gastrulate. When these halves were isolated from blastulae they formed the cell types typical of apical and mantle lobes. Vegetal halves isolated at all stages gastrulated and formed a more or less normal larva; the only defect these larvae had was the lack of an apical tuft, which normally forms from cells at the animal pole of the embryo. When lateral isolates were created at all developmental stages, these halves gastrulated. Cuts which separated presumptive anterior and posterior regions generated isolates at the 4-cell and blastula stages that formed essentially normal larvae; however, at the midgastrula stage these halves formed primarily anterior or posterior structures indicating that regional specification had taken place along the anterior-posterior axis. The plane of the first cleavage, which predicts the plane of bilateral symmetry, can be shifted by either changing the cleavage pattern that generates the bilateral 16-cell blastomere configuration or by isolating embryo halves prior to, or during, the 16-cell stage. These results indicate that while the plane of the first cleavage predicts the axis of bilateral symmetry, the axis is not established until the fourth cleavage. The development of Discinisca is compared to development in the inarticulate brachiopod Glottidia of the family Lingulidae and to Phoronis in the phylum Phoronida.  相似文献   

18.
In the unperturbed development of the mouse embryo one of the 2-cell blastomeres tends to contribute its progeny predominantly to the embryonic and the other to the abembryonic part of the blastocyst. However, a significant minority of embryos (20-30%) do not show this correlation. In this study, we have used non-invasive lineage tracing to determine whether development of blastocyst pattern shows any correlation with the orientation and order of the second cleavage divisions that result in specific positioning of blastomeres at the 4-cell stage. Although the orientation and order of the second cleavages are not predetermined, in the great majority (80%) of embryos the spatial arrangement of 4-cell blastomeres is consistent with one of the second cleavages occurring meridionally and the other equatorially or obliquely with respect to the polar body. In such cleaving embryos, one of the 2-cell stage blastomeres tends to contribute to embryonic while the other contributes predominantly to abembryonic part of the blastocyst. Thus, in these embryos the outcome of the first cleavage tends to correlate with the orientation of the blastocyst embryonic-abembryonic axis. However, the order of blastomere divisions predicts a specific polarity for this axis only when the earlier 2-cell blastomere to divide does so meridionally. In contrast to the above two groups, in those embryos in which both second cleavage divisions occur in a similar orientation, either meridionally or equatorially, we do not observe any tendency for the 2-cell blastomeres to contribute to specific blastocyst parts. We find that all these groups of embryos develop to term with similar success, with the exception of those in which both second cleavage divisions occur equatorially whose development can be compromised. We conclude that the orientations and order of the second cleavages are not predetermined; they correlate with the development of blastocyst patterning; and that the majority, but not all, of these cleavage patterns allow equally successful development.  相似文献   

19.
Development of the Asian amphioxus, Branchiostoma belcheri tsingtauense, was investigated by scanning and transmission electron microscopy (SEM and TEM) from the fertilized egg through the blastula stage. The fertilized egg is spherical (mean diameter 115 μm after SEM preparation) and is covered with microvilli. Throughout cleavage, the second polar body remains attached to the animal pole. The cleavage type in this species is essentially radial, as revealed by SEM observations. At the third cleavage or 8-cell stage, and at later stages, a size difference between blastomeres in the animal and the vegetal halves is clearly discernible, but less marked than that reported for the European amphioxus, B. lanceolatum. During the period spanning the third to the fifth cleavage (8–32-cell) stages, blastomeres are arranged in tiers along the animal-vegetal axis. After the sixth cleavage, or 64-cell stage, the tiered arrangement of the blastomeres is no longer seen. At the 4-cell stage, the blastocoel or cleavage cavity is seen as an intercellular space, opening to the outside. The blastocoel remains open at the animal and the vegetal poles in later stages. Throughout early development, the cytoplasm of the blastomeres includes yolk granules, mitochondria, Golgi complexes, and rough and smooth endoplasmic reticulum. Chromatin in the interphase nucleus is not clearly demonstrated, and chromosomes in the mitotic phase are also extremely difficult to detect. As yet, regional differences have not been found in distribution and organization of cytoplasmic components with respect to prospective ectodermal, mesodermal, and endodermal areas in the fertilized egg and later cleaved embryos, although there are possibly fewer yolk granules in the region of the animal pole than in the vegetal polar zone.  相似文献   

20.
Egg volume of a tropical sea urchin Echinometra mathaei is about one half that of other well-known species. We asked whether such a small size of eggs affected the timings of early developmental events or not. Cleavages became asynchronous from the 7th cleavage onward, and embryos hatched out before completion of the 9th cleavage. These timings were one cell cycle earlier than those in well-known sea urchins, raising the possibility that much earlier events, such as the increase in adhesiveness of blastomeres or the specification of dorso-ventral axis (DV-axis), would also occur earlier by one cell cycle. By examining the pseudopodia formation in dissociated blastomeres, it was elucidated that blastomeres in meso- and macromere lineages became adhesive after the 4th and 5th cleavages, respectively. From cell trace experiments, it was found that the first or second cleavage plane was preferentially employed as the median plane of embryo; the DV-axis was specified mainly at the 16-cell stage. Timings of these events were also one cell cycle earlier than those in Hemicentrotus pulcherrimus. The obtained results suggest that most of the early developmental events in sea urchin embryos do not depend on cleavage cycles, but on other factors, such as the nucleo-cytoplasmic ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号