首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】以丙烯腈为目标污染物,利用实验室已筛选获得的一株高效腈降解菌Rhodococus rhodochrous BX2,研究其对丙烯腈的降解特性,优化降解条件以提高菌株对丙烯腈的降解能力。【方法】通过单因素试验和响应面分析相结合的方法优化Rhodococus rhodochrous BX2对丙烯腈的降解条件。考察外加碳、氮源对BX2的生长及丙烯腈降解的影响,并确定其在丙烯腈合成废水中对丙烯腈的处理效果。【结果】菌株BX2优化后的最佳降解条件为:底物浓度403.51 mg/L、p H 7.44、温度34.46°C,在此条件下丙烯腈的降解率为95.1%。外加碳源为葡萄糖,或外加氮源为氯化铵对菌株生长及丙烯腈降解有明显的促进作用。菌株Rhodococus rhodochrous BX2能够高效降解合成废水中的丙烯腈,在30 h时其丙烯腈降解率可达89.4%。【结论】降解条件优化以及外源物质的添加强化了菌株对丙烯腈合成废水的处理效果,为生物法处理丙烯腈废水新方法的开发提供技术支持。  相似文献   

2.
The ability of acrylonitrile to induce cytotoxicity, sister-chromatid exchanges and DNA single-strand breaks was studied in cultured human bronchial epithelial cells. The toxic effect as determined by cloning efficiency was observed at a dose of 600 micrograms/ml but not at doses of both 150 and 300 micrograms/ml. The frequency of sister-chromatid exchange in untreated cells was 3.7 +/- 1.3 per cell. In contrast, cells treated with acrylonitrile at 150 and 300 micrograms/ml exhibited 6.6 +/- 1.3 and 10.7 +/- 1.7 sister-chromatid exchanges per metaphase, respectively. DNA single-strand breaks were induced by acrylonitrile at dose levels of 200 and 500 micrograms/ml. The genotoxic effects on human bronchial epithelial cells that were directly exposed to acrylonitrile are of interest in relation to evidence for the higher lung cancer incidence of acrylonitrile workers in epidemiological studies.  相似文献   

3.
Nitriles are potential soil pollutants from industrial wastewater. There has been increased demand for efficient process for nitrile degradation process. Nitrile hydratase (NHase) has been extensively used in the production of acrylamide and treatment of organocyanide contaminated industrial effluents. The NHase of Mesorhizobium sp., isolated from polyacrylonitrile activated sludge from fiber manufacturing wastewater treatment systems was studied in the whole bacterial cells. Different chemicals were added to observe the variation in the percentage of acrylonitrile converted into acrylamide. The result indicated that cobalt ions were the NHase cofactor and could increase the NHase activity. The addition of propionaldehyde, or butyraldehyde could enhance the acrylonitrile conversion rate. Therefore, acrylamide could be accumulated effectively and the percentage of acrylonitrile converted into acrylamide increased. Propionaldehyde was the most effective NHase activator. The percentage of acrylonitrile converted into acrylamide was nearly 100% at 3.8 h when propionaldehyde was added at about 207.4 mg/l. The addition of benzaldehyde was unable to increase the percentage of acrylonitrile converted into acrylamide. EDTA and acrylamide showed no effect on NHase activity. However, 0.1 mg/l of Ag2SO4 would slightly inhibit NHase activity, producing an acrylonitrile conversion rate of 492.9 mg/l with 54.9% converted at 29.1 h. The ability of the acrylonitrile biotransformation was completely inhibited if the Ag2SO4 concentration was above 0.5 mg/l.  相似文献   

4.
P Milvy  M Wolff 《Mutation research》1977,48(3-4):271-278
The mutagenicity of acrylonitrile (vinyl cyanide, propenenitrile) has been demonstrated in the Ames Salmonella typhimurium/liver microsome assay system. Acrylonitrile, in the presence of a mouse liver homogenate produced mutations in the TA 1535, TA 1538 and TA 1978 strains. Exposure of the bacteria was achieved by spotting the acrylonitrile on a "lawn" of salmonella, by shaking a reaction mixture consisting of bacteria, liver homogenate and acrylonitrile, and by exposing the homogenate and bacteria to an atmosphere containing the acrylonitrile. Mutagenesis by this latter method was observed at exposures as low as 57 ppm, less than three times the TLV of 20 ppm that is designated in the United States.  相似文献   

5.
Summary Acrylamide was continuously produced from acrylonitrile usingBrevibacterium sp. CHl grown and immobilized in a dual hollow fiber bioreactor of 8.0 cm3. The biomass reached as high as 200 gm/L of the space available for the cell growth. The volumetric productivity of the reactor was 88 gm/L. h and the conversion of acrylonitrile varied with acrylonitrile concentration, pH and feed rate.  相似文献   

6.
Nitrilase-containing resting cells of Rhodococcus rhodochrous J1 converted acrylonitrile and benzonitrile to the corresponding acids, but the purified nitrilase hydrolyzed only benzonitrile, and not acrylonitrile. The activity of the purified enzyme towards acrylonitrile was recovered by preincubation with 10 mM benzonitrile, but not by preincubation with aliphatic nitriles such as acrylonitrile. It was shown by light-scattering experiments, that preincubation with benzonitrile led to the assembly of the inactive, purified and homodimeric 80-kDa enzyme to its active 410-kDa aggregate, which was proposed to be a decamer. Furthermore, the association concomitant with the activation was reached after dialysis of the enzyme against various salts and organic solvents, with the highest recovery reached at 10% saturated ammonium sulfate and 50% (v/v) glycerol, and by preincubation at increased temperatures or enzyme concentrations.  相似文献   

7.
Nitriles are potential soil pollutants from industrial wastewater. There has been increased demand for an efficient process for the nitrile degradation process. Nitrile hydratase (NHase) has been extensively used in the production of acrylamide and treatment of organocyanide-contaminated industrial effluents. The NHase of Mesorhizobium sp., isolated from polyacrylonitrile (PAN) activated sludge from fiber manufacturing wastewater treatment systems was studied in the whole bacterial cells. Different chemicals were added to observe the variation in the percentage of acrylonitrile converted into acrylamide. The result indicated that cobalt ions were the NHase cofactor and could increase the NHase activity. The addition of propionaldehyde, or butyraldehyde, could enhance the acrylonitrile conversion rate. Therefore, acrylamide could be accumulated effectively and the percentage of acrylonitrile converted into acrylamide increased. Propionaldehyde was the most effective NHase activator. The percentage of acrylonitrile converted into acrylamide was nearly 100% at 3.8 h when propionaldehyde was added at about 207.4 mg/l. The addition of benzaldehyde was unable to increase the percentage of acrylonitrile converted into acrylamide. EDTA and acrylamide showed no effect on NHase activity. However, 0.1 mg/l of Ag2SO4 would slightly inhibit NHase activity, producing an acrylonitrile conversion rate of 492.9 mg/l with 54.9% converted at 29.1 h. The ability of the acrylonitrile biotransformation was completely inhibited if the Ag2SO4 concentration was above 0.5 mg/l. Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2008, Vol. 44, No. 3, pp. 304–307. The text was submitted in English.  相似文献   

8.
Intraperitoneal injection of acrylonitrile at 1.51-2.26 mmole/kg (80-120 mg/kg) or propionitrile at 0.54-1.51 mmole/kg (30-83 mg/kg) on the morning of Day 8 of gestation in the hamster induced exencephaly, encephalocoeles, and rib fusions and bifurcations in the offspring. These doses of the aliphatic nitriles also resulted in obvious toxicity to the dams. Multiple intraperitoneal injections of sodium thiosulfate at 4.03 mmole/kg (1 gm/kg) protected both dams and embryos against toxicity. When the larger doses of either acrylonitrile or propionitrile were given in the presence of sodium thiosulfate, teratogenic effects were observed in the absence of overt signs of maternal poisoning. A survey of the literature describes many studies which demonstrate that acrylonitrile and propionitrile are converted in vivo to toxicologically significant concentrations of cyanide and that sodium thiosulfate, an established cyanide antagonist, can provide protective actions against poisoning by either acrylonitrile or propionitrile. The observations suggest that the teratogenic effects of both acrylonitrile and propionitrile are related to the metabolic release of cyanide.  相似文献   

9.
Acrylamide was produced from acrylonitrile using immobilized Brevibacterium CH1 cells that were isolated from soil and found to possess nitrile hydratase activity. The reaction conditions and stability of the enzyme activity were studied. The conversion yield was nearly 100%, including a trace amount of acrylic acid. This strain showed strong activity of nitrile hydratase toward acrylonitrile and extremely low activity of amidase toward acrylamide. A packed bed reactor was operated in a fed-batch manner for acrylamide production of high concentration. The acrylonitrile concentration was maintained below 3% and the operating temperature at 4 degrees C to minimize enzyme deactivation.  相似文献   

10.
Summary The activity of cobalt induced acrylonitrile hydratase was found to be 130% higher than the iron induced acrylonitrile hydratase in Arthrobaeter sp. IPCB-3. The activity of cobalt induced hydratase was not affected up to 6% (w/v) acrylonitrile and 25% (w/v) acrylamide. However, iron induced hydratase activity was significantly inhibited even at half the concentration of the above components. Such a higher tolerance for the substrate and the product makes the Arthrobacter sp. IPCB-3 a potential candidate for the commercial production of acrylamide.  相似文献   

11.
A conductimetric biosensor for the detection of acrylonitrile in solution was designed and characterised using whole cells of Rhodococcus ruber NCIMB 40757, which were immobilised into a disc of dimethyl silicone sponge (ImmobaSil). The biosensor described was capable of the detection and quantification of acrylonitrile in aqueous solution, having a linear response to concentrations between 2 and 50 mM (106-2650 ppm) acrylonitrile. The biosensor has been shown to be reproducible with respect to the data obtained over a number of days, and retains stability for a minimum period of at least 5 days before recalibration of the biosensor is required.  相似文献   

12.
《Biomarkers》2013,18(1):89-96
Acrylonitrile is an IARC class 2B carcinogen present in cigarette smoke. Urinary 2-cyanoethylmercapturic acid (CEMA) is an acrylonitrile metabolite and a potential biomarker for acrylonitrile exposure. The objective of this work was to study the dose response of CEMA in urine of non-smokers and smokers of different ISO tar yield cigarettes. We observed that smokers excreted >100-fold higher amounts of urinary CEMA than non-smokers. The CEMA levels in smokers were significantly correlated with ISO tar yield, daily cigarette consumption, and urinary biomarkers of smoke exposure. In conclusion, urinary CEMA is a suitable biomarker for assessing smoking-related exposure to acrylonitrile.  相似文献   

13.
Effluent from the manufacture of acrylonitrile is difficult to biodegrade. It contains nine major organic components: acetic acid, acrylonitrile, acrylamide, acrylic acid, acrolein, cyanopyridine, fumaronitrile, succinonitrile, and maleimide. A range of bacteria have been isolated that can grow on, or convert all of the organic components of effluent from the manufacture of acrylonitrile. These bacteria can be used as the basis of a mixed culture system to treat the effluent. The bacteria were utilised in batch and continuous cultures to degrade a synthetic wastewater containing acrylonitrile, acrylamide, acrylic acid, cyanopyridine and succinonitrile. The mixed microbial population was adapted by varying the growth rate and switching from continuous to batch and back to continuous growth, to degrade these five compounds as well as acrolein, fumaronitrile and maleimide.Abbreviations BOD Biological Oxygen Demand - COD Chemical Oxygen Demand - T D Doubling Time - ppm parts per million - HPLC High Pressure Liquid Chromatography - GLC Gas Liquid Chromatography  相似文献   

14.
A gram-negative rod-shaped bacterium capable of utilizing acrylonitrile as the sole source of nitrogen was isolated from industrial sewage and identified as Klebsiella pneumoniae. The isolate was capable of utilizing aliphatic nitriles containing 1 to 5 carbon atoms or benzonitrile as the sole source of nitrogen and either acetamide or propionamide as the sole source of both carbon and nitrogen. Gas chromatographic and mass spectral analyses of culture filtrates indicated that K. pneumoniae was capable of hydrolyzing 6.15 mmol of acrylonitrile to 5.15 mmol of acrylamide within 24 h. The acrylamide was hydrolyzed to 1.0 mmol of acrylic acid within 72 h. Another metabolite of acrylonitrile metabolism was ammonia, which reached a maximum concentration of 3.69 mM within 48 h. Nitrile hydratase and amidase, the two hydrolytic enzymes responsible for the sequential metabolism of nitrile compounds, were induced by acrylonitrile. The optimum temperature for nitrile hydratase activity was 55°C and that for amidase was 40°C; both enzymes had pH optima of 8.0.Abbreviations PBM phosphate buffered medium - GC gas chromatography - GC/MS gas chromatography/mass spectrometry  相似文献   

15.
The nitrile hydratase (Nhase) induced cells of Rhodococcus rhodochrous PA-34 catalyzed the conversion of acrylonitrile to acrylamide. The cells of R. rhodochrous PA-34 immobilized in 2% (w/v) agar (1.76 mg dcw/ml agar matrix) exhibited maximum Nhase activity (8.25 U/mg dcw) for conversion of acrylonitrile to acrylamide at 10°C in the reaction mixture containing 0.1 M potassium phosphate buffer (pH 7.5), 8% (w/v) acrylonitrile and immobilized cells equivalent to 1.12 mg dcw (dry cell weight) per ml. In a partitioned fed batch reaction at 10°C, using 1.12 g dcw immobilized cells in a final volume of 1 l, a total of 372 g of acrylonitrile was completely hydrated to acrylamide (498 g) in 24 h. From the above reaction mixture 87% acrylamide (432 g) was recovered through crystallization at 4°C. By recycling the immobilized biocatalyst (six times), a total of 2,115 g acrylamide was produced.  相似文献   

16.
Acrylonitrile is a potent hepatotoxic, mutagen, and carcinogen. A role for free radical-mediated lipid peroxidation in the toxicity of acrylonitrile has been suggested. The present study was designed to assess the hepatoprotective effect of quercetin against acrylonitrile-induced hepatotoxicity in rats. Liver damage was induced by oral administration of acrylonitrile (50 mg/kg/day/5 weeks). Acrylonitrile produced a significant elevation of malondialdehyde (138.9%) with a marked decrease in reduced glutathione (72.4%), and enzymatic antioxidants; superoxide dismutase (81%), and glutathione peroxidase (53.2%) in the liver. Serum aspartate aminotransferase, alanine aminotransferases, direct bilirubin, and total bilirubin showed a significant increase in acrylonitrile alone treated rats (115.5%, 110.8%, 1006.8%, and 1000.8%, respectively). Pretreatment with quercetin (70 mg/kg/day/6 weeks) and its coadministration with acrylonitrile prevented acrylonitrile-induced alterations in hepatic lipid peroxides and enzymatic antioxidants as well as serum aminotransferases and bilirubin. Histopathological findings supported the biochemical results. We suggest that querectin possess hepatoprotective effect against acrylonitrile-induced hepatotoxicity through its antioxidant activity.  相似文献   

17.
Acrylonitrile is a very high volume industrial chemical used primarily in the manufacture of plastics and rubber, which displays a pronounced acute toxicity and may be carcinogenic. The damage to the hematopoietic function by acrylonitrile may result from interference with cytokine production and cytokine receptor binding. Our present data show that acrylonitrile modulates the expression of some genes implicated in cell differentiation, cell-cycle progression, and clonogenic potential of human cord blood cells. A macroarray hybridization analysis showed that expression of the CXCR4, MCP-1, and MRP8 genes was modified by acrylonitrile exposure. Moreover, the acrylonitrile cell target seems to be the myeloid compartment, as assessed by a CFU-GM assay. In particular, the downregulation of CXCR4, MCP1, and MRP8 can be responsible for the observed reduction of cell proliferation and clonogenic capability of CFU-GM precursors. A Western blot assay showed an acrylonitrile-dependent induction of Bax, while Bcl-2 expression changed only after 48 h of chemical exposure. Bax was overexpressed in respect to Bcl-2, and this fact can be responsible for the induction in cell death after 24 h of treatment. C-fos and c-jun were also downregulated after 24 h and 6 h of treatment, respectively.  相似文献   

18.
The acrylonitrile metabolites 2-cyanoethylmercapturic acid (CEMA) and 2-hydroxyethylmercapturic acid (HEMA) have been determined in human urine using an automated column-switching procedure. A diluted sample was centrifuged just prior to being injected into a reusable precolumn packed with a restricted access material and coupled to a liquid chromatography-tandem mass spectrometry system. This method achieved satisfactory reproducibility and accuracy. Average intra- and interday variations (% relative standard deviations) ranged from 2.4 to 3.8% for CEMA and from 2.7 to 10.5% for HEMA. The limits of quantification were 0.003 and 0.099ng/ml for CEMA and HEMA, respectively. It was used to study the uptake of acrylonitrile from smoke constituents by both nonsmokers and smokers of different tar yield cigarettes under ISO 3308 smoking condition. Metabolite concentrations in smoker urine samples were approximately 12 times higher compared with those in nonsmokers for CEMA and 3 times higher for HEMA. Urinary CEMA levels show a clear dose-response relationship with daily cigarette consumption and urinary cotinine. CEMA can also discriminate between smokers of different ISO cigarettes. Because HEMA is not specific, it is only slightly related to smoking and acrylonitrile exposure. The validated biomarker CEMA will continue to be useful for studies of acrylonitrile uptake by smokers.  相似文献   

19.
A simple, convenient synthetic procedure for [14C]acrylonitrile is described. Na14CN is used as the radioactive starting material. Small (milligram) amounts are converted to 3-[14C]Hydroxypropionitrile by a substitution reaction with 2-chloroethanol. 3-[14C]Hydroxypropionitrile is then tosylated, and the specific activity of this intermediate product is easily determined using its uv extinction coefficient and scintillation counting. [14C]Acrylonitrile is obtained rapidly on distillation by heating the tosylate in the presence of a high boiling tertiary amine base catalyst. The tosylate intermediate can be stored, in contrast to radioactive acrylonitrile, which is unstable. The reaction of acrylonitrile with lysine, hydroxylysine, and histidine residues in human Achilles tendon collagen, as well as chromatographic separation and identification of the carboxyethyl derivatives of these amino acids, is also described.  相似文献   

20.
Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M−1 s−1 and 0.34 ± 0.15 s−1, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min−1 at pH 6.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号