首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Transmission electron microscopy of fowl embryos during the 7–10 h preceding migration of trunk-level neural crest (NC) cells revealed extracellular material near the NC-cells. In contrast to the cells of the neural tube, the basal surfaces of NC-cells possessed projections, and were neither contiguous nor covered by a complete basal lamina. The apical zones of NC-cells showed intercellular junctions at the stage of neural-fold fusion, but such junctions were absent in some NC-cells 5 h before migration. The basal laminae of the neural tube and the ectoderm were fused lateral to the NC before migration. In vitro, NC-cell migration commenced immediately when neural anlagen were explanted onto fibronectin-rich matrices, but only when the neural anlagen were from a level where migration had commenced in vivo. Migration was delayed 4–8 h when premigratory-level expiants were used. Short-term cell-adhesion assays showed that NC-cells of both premigratory and migratory levels could adhere to fibronectin-rich matrices and to collagen gels, but only migratory NC-cells could be detached from the neural anlage. The results suggest that the precise schedule of the onset of NC-cell migration correlates with a decrease in the intercellular adhesion of NC-cells.  相似文献   

2.
Neural crest cells migrate extensively through a complex extracellular matrix (ECM) to sites of terminal differentiation. To determine what role the various components of the ECM may play in crest morphogenesis, quail (Coturnix coturnix japonica) neural crest cells have been cultured in three-dimensional hydrated collagen lattices containing various combinations of macromolecules known to be present in the crest migratory pathways. Neural crest cells migrate readily in native collagen gels whereas the cells are unable to use denatured collagen as a migratory substratum. The speed of movement decreases linearly as the concentration of collagen in the gel increases. Speed of movement of crest cells is stimulated in gels containing 10% fetal calf serum and chick embryo extract, 33 micrograms/ml fibronectin cell-binding fragments, 3 mg/ml chondroitin sulfate, or 3 mg/ml chondroitin sulfate proteoglycan when compared to rates of movement through collagen lattices alone. Low concentrations of hyaluronate (250-500 micrograms/ml) in a 750 micrograms/ml collagen gel do not alter rates of movement over collagen alone, but higher concentrations (4 mg/ml) greatly inhibit migration. Conversely, hyaluronate (250 micrograms/ml) significantly increases speed of movement if the crest cells are cultured in high concentration collagen gels (2.5 mg/ml), suggesting that hyaluronate is expanding spaces and consequently enhancing migration. The morphology and mode of movement of neural crest cells vary with the matrix in which they are grown and can be correlated with their speed of movement. Light and scanning electron microscopy reveal rounded, blebbing cells in matrices associated with slower translocation, whereas rounded cells with branching filopodia or lamellipodia are associated with rapid translocation. Bipolar cells with long processes are observed in cultures of rapidly moving cells that appear to be adhering strongly, as well as in cultures of cells that are stationary for long periods. These data, considered with the known distribution of macromolecules in the early embryo, suggest the following: (1) Both collagen and fibronectin can act as preferred substrata for migration. (2) Chondroitin sulfate and chondroitin sulfate proteoglycan increase speed of movement, but probably do so by decreasing adhesiveness and thereby producing more frequent detachment. In the embryo, crest cells would most likely avoid regions containing high concentrations of chondroitin sulfate. (3) Hyaluronate cannot act as a substratum for migration, but in low concentrations it can open spaces in the matrix and consequently may stimulate movement. The complex interactions of combined matr  相似文献   

3.
Synopsis The proteoglycans of cartilage are complex molecules in which chondroitin sulphate and keratan sulphate chains are covalently linked to a protein core, forming a polydisperse population of proteoglycan monomers. By interaction with hyaluronic acid and link proteins, the monomers form large macromolecular complexes.In vivo the proteoglycans mainly occur in such aggregates. In the electron microscope, the cartilaginous matrix can be seen to be made up of thin collagen fibrils and polygonal granules about 10–50 nm in diameter. Addition of the polyvalent cationic dye Ruthenium Red to glutaraldehyde and osmium tetroxide fixatives yields a dense selective staining of the matrix granules. Following a short digestion of cartilage slices with either of the chondroitin sulphate-degrading enzymes hyaluronidase and chondroitinase or with the proteolytic enzyme papain, the matrix granules were few in number or completely absent and the proteoglycan content, measured as hexosamine, decreased by up to 90%. Similarly, extraction of the cartilage with 4 M guanidine-HCl removed all matrix granules and most of the proteoglycans. From these findings, it can be concluded that the matrix granules represent proteoglycans, most probably in aggregate form, and that Ruthenium Red staining may be used to study the distribution of these macromolecules in thin sections. As a complement to chemical studies on proteoglycan structure, it is also possible to observe and measure individual molecules in the electron microscope after spreading them into a monomolecular layer with cytochromec. This technique has been applied in investigations on proteogly cans isolated from bovine nasal cartilage and other hyaline cartilages. The molecules in the monomer fractions appeared as an extended central core filament to which about 25–30 side-chain filaments were attached at various intervals. The core filament, averaging about 300 nm in length, was interpreted as representing the polysaccharide-binding part of the protein core and the side-chain filaments, averaging about 45 nm in length, as representing the clusters of chondroitin sulphate chains. Statistical treatment of the collected data indicated that no distinct subpopulations existed within the monomer fractions. The electron microscopic results correlated well with chemical data for the corresponding fractions and together with recent observations on various aggregate fractions strongly support present concepts of proteoglycan structure.Paper presented at a symposium The Changing directions of carbohydrate histochemistry at the Fifth International Congress of Cytochemistry and Histochemistry in Bucharest, Romania on September 1976.  相似文献   

4.
5.
"Intimal cushions" which develop in the late gestation lamb ductus arteriosus (DA) are characterized by smooth muscle cells migrating into a large subendothelial space. Our previous in vitro studies, comparing DA cells with those from the aorta (Ao), have shown, even in early gestation, a 10-fold increase in DA endothelial incorporation of hyaluronan into the subendothelial matrix, a 2-fold increase in smooth muscle fibronectin synthesis and, in response to endothelial conditioned medium, a 2-fold increase in chondroitin sulfate. To determine whether these extracellular matrix components may be playing a role in inducing DA smooth muscle migration, we seeded Da or Ao smooth muscle cells onto three-dimensional collagen (2.0 mg/ml) gels and assessed migration 2, 5, and 8 days later. After 8 days, significantly greater numbers of DA compared to Ao cells were found invading the gels (23.1 +/- 3.1% vs 16.2 +/- 2.3%, P less than 0.01). Addition of GRGDS peptides (0.5 mM) or antibodies against fibronectin significantly decreased migration in the DA cells, but had no effect on migration in the Ao. Addition of endothelial conditioned medium to induce smooth muscle chondroitin sulfate production had no effect on DA cell migration. Inclusion of hyaluronan in the gel (0.5-1.5 mg), however, further enhanced DA cell migration, being greatest (31.9 +/- 3.1%) at a concentration of 1 mg/ml. Hyaluronan was without effect on Ao smooth muscle cell migration. The ability of hyaluronan to promote migration in cultures of DA smooth muscle cells was blocked completely by the addition of antibodies (1:100 dilution, 1 micrograms/ml) to a cell surface hyaluronan binding protein (HABP). As well, addition of anti-HABP to cells on gels containing collagen only significantly reduced migration in the DA but not the Ao. Immunofluorescent staining revealed that in DA cells, HABP was more concentrated in lamellipodia and leading edges than in Ao cells. As well, DA smooth muscle cells synthesized greater amounts of HABP as determined by Western immunoblotting and immunoprecipitation using polyclonal antisera to HABP. Thus, our studies indicate that both increased fibronectin and HABP contribute to the enhanced migration of DA smooth muscle cells. These results, together with our previous studies showing a 10-fold increase in hyaluronan accumulation in the DA endothelial matrix, would suggest a mechanism for increased DA smooth muscle migration into the subendothelial matrix observed in vivo.  相似文献   

6.
Mouse embryonic palatal mesenchymal (MEPM) cells were cultured either on plastic tissue culture dishes or on the surface of three-dimensional collagen gels or within collagen gel matrices in DMEM/F12 medium containing 2.5% donor calf serum. MEPM cells proliferated exponentially when cultured on collagen or on plastic. Cells cultured within collagen gels did not proliferate but remained viable. Addition of 10 ng/ml epidermal growth factor (EGF) or transforming growth factor alpha (TGF) stimulated the proliferation of those cells cultured on plastic or on collagen but not those cultured within collagen gels. Immunocytochemical analysis revealed that MEPM cells synthesise collagen types I, III, IV, V, VI and IX; fibronectin, heparan sulphate proteoglycan, laminin and tenascin in vitro. These molecules are all present in the developing palate in vivo. EGF and TGF produced a generalised stimulation of extracellular matrix (ECM) synthesis by MEPM cells in vitro. Biochemical analysis indicated that cells cultured within collagen gels had the highest intrinsic rate of protein synthesis. On all substrata neither EGF nor TGF markedly altered the types of ECM molecules synthesised but rather caused a general increase in the total amount produced. This stimulation was most marked where the cells were cultured within collagen gels. The lack of stimulation of proliferation of MEPM cells cultured within collagen gels (i.e. in a physiologically-relevant environment) by EGF or TGF together with the marked stimulation of ECM synthesis suggests that these factors may act as differentiation signals via their effects on ECM production. Correspondence to: M.J. Dixon  相似文献   

7.
Collagen XIV was isolated from neutral salt extracts of human placenta and purified by several chromatographic steps including affinity binding to heparin. The same procedures also led to the purification of a tissue form of fibronectin. Collagen XIV was demonstrated by partial sequence analysis of its Col1 and Col2 domains and by electron microscopy to be a disulphide-linked molecule with a characteristic cross-shape. The individual chains had a size of approximately 210 kD, which was reduced to approximately 180 kD (domain NC3) after treatment with bacterial collagenase. Specific antibodies mainly to NC3 epitopes were obtained by affinity chromatography and used in tissue and cell analyses by immunoblotting and radioimmunoassays. Two sequences from NC3 were identified on fragments obtained after trypsin cleavage. They were identical to cDNA-derived sequences of undulin, a noncollagenous extracellular matrix protein. This suggests that collagen XIV and undulin may be different splice variants from the same gene. Heparin binding was confirmed in ligand assays with a large basement membrane heparan sulphate proteoglycan. This binding could be inhibited by heparin and heparan sulphate but not by chondroitin sulphate. In addition, collagen XIV bound to the triple helical domain of collagen VI. The interactions with heparin sulphate proteoglycan and collagen VI were not shared by the NC3 domain, or by reduced and alkylated collagen XIV. No or only low binding was observed for collagens I-V, pN- collagens I and III, and several noncollagenous matrix proteins, including laminin, recombinant nidogen, BM-40/osteonectin, plasma and tissue fibronectin, vitronectin, and von Willebrand factor. Insignificant activity was also shown in cell attachment assays with nine established cell lines.  相似文献   

8.
Summary Endocytosis via the hyaluronic acid/chondroitin sulphate receptor of rat liver endothelial cells was studied ultrastructurally, by use of a probe consisting of chondroitin sulphate proteoglycan attached to 15-nm gold particles. The probe bound to the surface of the cells exclusively in coated regions of the plasma membrane. Internalization at 37° C took place in less than one minute during which time interval the bound probe was transferred to coated vesicles. Further transfer to lysosomes was delayed in association with an accumulation of probes in a prelysosomal compartment consisting of large vacuoles in which probes lined the inner aspect of the membrane. Transport to lysosomes occurred only after a lag phase of at least 40–60 min at 37° C.Abbreviations CS chondroitin sulphate - CSPG chondroitin sulphate proteoglycan - CSPG-Au CSPG-gold complex - EM electronmicroscopical or electron microscopy - HA hyaluronic acid - KC Kuppfer cells - LEC liver endothelial cells - PC parenchymal cells - RES reticuloendothelial system  相似文献   

9.
Summary Trunk-level neural anlagen bearing neural crest cells at the stage of initiation of migration were isolated from chick embryos and explanted in serum-free medium onto glass substrates which had previously been treated with extracellular materials. After 0.5–2 h incubation, the expiants were dislodged with a stream of culture medium and the substrate examined for adherent crest cells. Crest cells adhered to collagen gels, and adhered to and spread on adsorbed fibronectin; antiserum to fibronectin prevented adhesion to fibronectin but not to collagen gels. Air-dried collagen gels and collagen solutions were less adhesive, the adhesivity declining with longer drying time and lower collagen concentration. Crest cells adhered poorly to dried gelatin and not at all to adsorbed collagen. Fibronectin increased the adhesion to dried collagen and gelatin. Pretreatment of collagen gels with hyaluronate retarded adhesion. Hyaluronate pretreatment also retarded adhesion to adsorbed fibronectin but only when adsorbed collagen was also present. Pretreatment of collagen gels with the proteoglycan monomer from bovine nasal cartilage had no effect of the adhesion of crest cells, but the proteoglycan almost completely inhibited adhesion to adsorbed fibronectin, but only when absorbed collagen was also present. The results are discussed in terms of the control of migration of neural crest cells by extracellular materials.  相似文献   

10.
Summary The immunohistochemical localization of large proteoglycan and small proteoglycan was observed, using antibodies 2B1 and 6B6 (Sobueet al., 1988, 1989a), in fetal and adult pancreas and biliary system as well as in tumour tissues, obtained from 11 autopsies and 74 biopsies. The distribution of chondroitin 4- and 6-sulphate side chains, type I and IV collagen and elastin were also studied. In adult pancreas and all the biliary tracts examined, periductal fibrous tissues consisted mainly of dermatan sulphate small proteoglycan with networks of fibrous elements, which were composed of large proteoglycan, elastin, type I collagen and type IV collagen. In the interstitial components of cystadenoma of pancreas and biliary duct carcinoma, similar small proteoglycan-rich components were relatively abundant, although large proteoglycan was present in much larger amounts than that in non-neoplastic adult tissues. In some cholangiomas, the extra-and intracellular hyaline globules formed by the carcinoma cells were found to contain chondroitin sulphate large proteoglycan, laminin and fibronectin.The distribution of proteoglycans was observed to be different in the arterial walls of the interlobular tissues of the adult and the fetal pancreas. The biological significance of large and small proteoglycans in the interstitial connective tissues was discussed.  相似文献   

11.
Interactions of fibronectin and glycosaminoglycans and the involvement of heparan sulphate and hyaluronate in fibronectin-collagen interactions have been studied by affinity chromatography. Partially periodate-oxidized glycosaminoglycans were coupled to adipic acid dihydrazide-substituted agarose. The elution of fibronectin was performed by using increasing concentrations of NaCl. Of the copolymeric glycosaminoglycans, heparin and self-associating heparan sulphates display the highest affinity towards fibronectin while hyaluronic acid and chondroitin 6-sulphate do not bind fibronectin. Competitive release experiments suggest the existence of common binding sites for copolymeric glycosaminoglycans on the fibronectin backbone. Heparan sulphate favours the formation of collagen-fibronectin complexes at low molarity, while hyaluronate is ineffective at low concentrations and prevents the formation of complexes when present at concentrations > 1 mg ml?1. It is suggested that heparan sulphate promotes the formation of complexes which bind with fibronectin thus producing steric changes that increase the affinity for collagen, while hyaluronate prevents the binding of fibronectin to collagen by a steric exclusion mechanism.  相似文献   

12.
The purpose of the present study was to observe the expansion of a monolayer of endothelial cells over specific components of the basement membrane. This was performed in vitro in a monolayer expansion assay over 5 days. The control surface was uncoated glass in the form of coverslips. Test substances were coated at a concentration of 10 μg/ml. The highest expansion was obtained with a high molecular weight fragment mixture of collagen type IV (IV-F, consisting of 75, 120 and 140 KD fragments), followed by fibronectin. Collagens type I, III and IV tetramer gave similar results, less than fibronectin or collagen type IV-F, although all of the above basement membrane coatings promoted expansion significantly above that of the control (P<0.01). The poorest expansion was obtained with laminin, which was significantly less than the control. The pentapeptide GRGDS, related to the fibronectin cell binding region, gave expansion significantly below that of the intact fibronectin molecule, as did the intact collagen type IV molecule compared with type IV-F (P<0.025). This indicates that sequences of the fibronectin molecule other than the cell binding sequence may be involved in promoting endothelial cell expansion. In addition, the integrity of the collagen type IV molecule does not appear necessary for this effect. On the contrary, the higher movement on IV-F may represent an inherent repair mechanism in damaged endothelium. Autoradiographic studies show that endothelial cell proliferation at the expanding front is involved in the migration assay.  相似文献   

13.
The present study shows the localization of epidermal and dermal proteins produced in lizard skin cultivated in vitro. Cells from the skin have been cultured for up to one month to detect the expression of keratins, actin, vimentin and extracellular matrix proteins (fibronectin, chondroitin sulphate proteoglycan, elastin and collagen I). Keratinocytes and dermal cells weakly immunoreact for Pan-Cytokeratin but not with the K17-antibody at the beginning of the cell culture when numerous keratin bundles are present in keratinocyte cytoplasm. The dense keratin network disappears after 7-12 days in culture, and K17 becomes detectable in both keratinocytes and mesenchymal cells isolated from the dermis. While most epidermal cells are lost after 2 weeks of in vitro cultivation dermal cells proliferate and form a pellicle of variable thickness made of 3-8 cell layers. The fibroblasts of this dermal equivalent produces an extracellular matrix containing chondroitin sulphate proteoglycan, collagen I, elastic fibers and fibronectin, explaining the attachment of the pellicle to the substratum. The study indicates that after improving keratinocyte survival a skin equivalent for lizard epidermis would be feasible as a useful tool to analyze the influence of the dermis on the process of epidermal differentiation and the control of the shedding cycle in squamates.  相似文献   

14.
U-937 monoblastic cells were differentiated into macrophage-like cells in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA). Control cells and differentiated cells were labeled with35S-sulfate and were both found to produce exclusively chondroitin sulfate proteoglycan. No differences in glycosaminoglycan structure or macromolecular properties of the proteoglycans produced in the two different cell systems could be observed. However, the differentiated cells were found to have a lower capacity for chondroitin sulfate proteoglycan synthesis, both under ordinary experimental conditions, and when exposed to stimulators of glycosaminoglycan biosynthesis such as -d-xylosides.Abbreviations SDS sodium dodecyl sulfate - TPA 12-O-tetradecanoylphorbol-13-acetate - PG proteoglycan - GAG glycoaminoglycan - CS chondroitin sulfate - CSPG chondroitin sulfate proteoglycan - NASDAE naphthol AS-D acetate esterase  相似文献   

15.
Summary Fixation and staining procedures were developed for the electron microscopic demonstration of glycosaminoglycans (GAGs) in human epidermis. En bloc staining with cuprolinic blue (CB), ruthenium red (RR) and tannic acid (TA) in the primary fixative were applied for the localization of the GAGs. Removal of the epidermal basal lamina and underlying dermis was a prerequisite for stain penetration. In CB-fixed specimens 50 nm long, rod-like granules were found attached to keratinocyte cell surfaces, while the RR- and TA-fixed specimens containd round granules ( 10 and 30 nm, respectively). The stainability of the CB-positive granules in the presence of 0.3 mol/l MgCl2 indicated that they contained sulphated GAGs. Prefixation digestions of epidermal sheets with chondroitinase ABC, Streptomyces hyaluronidase, and heparitinase showed that the RR-positive granules also contained sulphated GAGs, mostly heparan sulphate. The granules visualized with TA on keratinocytes were susceptible to heparitinase treatment, but the abundance of TA-staining suggested that TA also stained structures other than heparan sulphate. The EM data was in accordance with the 35SO4 labelling experiments showing that heparan sulphate was the major sulphated GAG synthesized in epidermis, whereas chondroitin/ dermatan sulphates comprised about one fifth of the total activity incorporated. The distribution of the CB-, RR- and TA-positive granules on cell surfaces were similar. The morphology of the proteoglycan granules was probably determined by the extent of the GAG-chain collapse following binding to each of the dyes.  相似文献   

16.
Cell adhesion to collagen XIV is implied to be mediated by proteoglycans as cellular receptors (T. Ehniset al.,1996,Exp. Cell Res.229, 388–397). In order to define the cell binding region(s), fusion proteins expressed inEscherichia coliand covering the large noncollagenous domain NC3 of collagen XIV were used as substrates for the adhesion of skin fibroblasts. A prominent cell binding site could be localized in the N-terminal fibronectin type III repeat of collagen XIV and its immediate C-terminal extension. Since this region also mediates the binding of the small chondroitin/dermatan sulfate proteoglycan decorin (T. Ehniset al.,1997,J. Biol. Chem.272, 20414–20419), our finding could provide the molecular basis for the observation that decorin serves as inhibitor and potential modulator of cellular interactions with collagen XIV.  相似文献   

17.
The distribution of basement membrane and extracellular matrix components laminin, fibronectin, type IV collagen and heparan sulphate proteoglycan was examined during posterior neuropore closure and secondary neurulation in the mouse embryo. During posterior neuropore closure, these components were densely deposited in basement membranes of neuroepithelium, blood vessels, gut and notochord; although deposition was sparse in the midline of the regressing primitive streak. During secondary neurulation, mesenchymal cells formed an initial aggregate near the dorsal surface, which canalized and merged with the anterior neuroepithelium. With aggregation, fibronectin and heparan sulphate proteoglycan were first detected at the base of a 3- to 4-layer zone of radially organized cells. With formation of a lumen within the aggregate, laminin and type IV collagen were also deposited in the forming basement membrane. During both posterior neuropore closure and secondary neurulation, fibronectin and heparan sulphate proteoglycan were associated with the most caudal portion of the neuroepithelium, the region where newly formed epithelium merges with the consolidated neuroepithelium. In regions of neural crest migration, the deposition of basement membrane components was altered, lacking laminin and type IV collagen, with increased deposition of fibronectin and heparan sulphate proteoglycan.  相似文献   

18.
35S-labelled chondroitin sulfate proteoglycans isolated from conditioned media of cultured human monocytes (day 1in vitro) and monocyte-derived macrophages (day 6in vitro) were chromatographed on columns of immobilized fibronectin and collagen, respectively. The elution profiles prior to and after alkali treatment were compared with those of standards chondroitin 4-sulfate and chondroitin sulfate E and heparin. The day 635S-proteoglycans have a higher sulfate density than the day 1 species, but this difference did not affect the elution profiles after chromatography on collagen-Sepharose, whereas the day 6 proteoglycans bound more firmly than the day 1 fraction to fibronectin-Sepharose. The elution patterns obtained for these distinct proteoglycans closely resembled those of heparin and oversulfated chondroitin sulfate E standards, and clearly demonstrated the importance of sulfate density both for the affinity to fibronectin and collagen. Neither day 1 nor day 635S-proteoglycans were found to interact with hyaluronate.Abbreviations used CSPG chondroitin sulfate proteoglycan - GAG glycosaminoglycan - CS chondroitin sulfate - CS-E chondroitin 4,6 disulfate - MDM monocyte-derived macrophages  相似文献   

19.
This study demonstrates how the mechanical strength of a series of collagen/composite gels can be measured using a penetrometer. It was found that the presence of fibrin in collagen gels resulted in increased gel strength. Similarly hyaluronic acid was found to increase the strength of collagen gels. Addition of heparin weakened collagen gels as did chondroitin-6-sulphate. Neutrophil migration into collagen gels was found to be inversely proportional to gel strength. Fibrin and hyaluronic acid containing gels inhibited neutrophil migration while the presence of heparin and chondroitin sulphate increased neutrophil migration. BHK gel contraction experiments demonstrated how the presence of fibrin prevents gel contraction. Despite increasing gel strength the presence of hyaluronic acid appeared to have no effect on BHK contraction of collagen gels. Similarly the presence of heparin or chondroitin sulphate had no effect on gel contraction by BHK cells.  相似文献   

20.
M Lehto  M Kvist  T Vieno  L Józsa 《Acta anatomica》1988,133(4):297-302
The macromolecular composition of sarcolemma and endomysium was studied by classical staining methods for glycosaminoglycans and using immunological techniques for proteins. Both proteoglycans and glycosaminoglycans (heparan sulphate, dermatan sulphate, chondroitin sulphate) could be detected in the sarcolemma. Type IV and type V collagen and laminin were found exclusively in the sarcolemma and endomysium. Type I and type III collagen as well as fibronectin were detected both in the endomysium and perimysium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号