首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inhibition of the (Na,K)ATPase by calcium was investigated in plasma membrane preparations of rat axolemma, skeletal muscle and kidney outer medulla. Ouabain titration curves demonstrated that physiological calcium (0.08-5 microM) inhibited mainly the high affinity alpha 2 isomer. In axolemma all the (Na,K)ATPase had high ouabain affinity and calcium inhibited 40-50% of the activity with a Ki of 1.9 +/- 0.9 x 10(-7) M. In skeletal muscle high and low ouabain affinity components were present in equal amounts and calcium inhibited only the high affinity component with a Ki of 1.3 +/- 0.3 x 10(-7) M. Kidney enzyme had a low affinity for ouabain and showed very little sensitivity to calcium in the physiological range. It was demonstrated that high calcium levels inhibit the enzyme in a general sense, irrespective of the isomer, with a Ki of 6.5 +/- 6 x 10(-4) M for the kidney and 5.9 +/- 4 x 10(-4) M for the axolemma enzymes. In axolemma, enzyme activity was studied as a function of sodium concentration. Physiological calcium reduced Vmax while not significantly changing K 0.5 for sodium binding.  相似文献   

2.
3.
4.
Increasing NaCl concentration (0, 50, 100 and 150 mM) progressively decreased growth and seed yield of clusterbean (Cyamopsis tetragonoloba Taub.) which was associated with decreased concentrations of potassium and calcium and increased concentration of sodium in the shoots. Supplemental calcium (2.5 and 5.0 mM) significantly ameliorated the adverse effects of NaCl due to enhanced Ca and K uptake and reduced Na uptake. Calcium also alleviated the negative effects of NaCl on activities of nitrogen metabolism enzymes as well as on contents of soluble protein and free amino acids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The effects of saline-stresses due to different salts on growth and on foliar solute concentrations in seedlings of two species of wheat that differed in salt tolerance. Triticum aestivum L. cv. Probred and Triticum turgidum L. (Durum group) cv. Aldura, were studied. Triticum aestivum is the more salt tolerant species. The salts used were NaCl, KCI, a 1:1 mixture of NaCI and KCI, and these same monovalent cation salts but mixed with CaCI2 at a ratio of 2:1 on a molar basis of monovalent to divalent cation salts. Growth inhibition of both species was a function of media osmotic potentials. There was a small additional inhibition of growth if KCI replaced NaCI as the salinizing salt. CaCI2 had little or no effect on growth inhibition beyond an osmotic effect except at the most severe stress level, i.e. when Ca2+ concentrations may be excessive. The amounts of water-soluble Ca2+ were about 10 times higher in leaves of plants grown in the presence of CaCI2 than in its absence, but its concentrations even then were approximately 10% or less of those of the monovalent cations. Including CaCI2 in growth media resulted in a reduction in the amount of Na+ in leaves compared to the amounts in plants grown at the same osmotic potential but in the absence of CaCI2. Triticum aestivum was a better Na+-excluder than T. turgidum. With CaCI2 in media, (Na++ K+) remained relatively constant or increased by small amounts as media osmotic potentials décreased. In the absence of CaCI2+ (Na++ K+) increased by large amounts when media osmotic potentials were at ?0.6 and ?0.8 MPa. It is concluded that the accumulation system in leaves for monovalent cations was under feed-back control, and that this control mechanism was inhibited by high media concentrations of Na+ and/or K+. Sucrose was present at a constant amount under all growth conditions. Proline started accumulating when (Na++ K+) exceeded a threshold value of 200 μmol (g fresh weight)?1. Its concentration was 5 to 13% of that portion of (Na++ K+) that exceeded the threshold value.  相似文献   

6.
High levels of naturally occurring selenium (Se) are often found in conjunction with different forms of salinity in central California. Plants considered for use in phytoremediation of high Se levels must therefore be salt tolerant. Selenium accumulation was evaluated for the following species under increasing salt (NaCl and CaCl) conditions:Brassica napus L. (canola),Hibiscus cannibinus L. (kenaf),Festuca arundinacea L. (tall fescue), andLotus tenuis L. (birdsfoot trefoil). The experimental design was a complete randomized block with four salt treatments of <1, 5, 10, and 20 dS m-1, four plant species, three blocks, and six replicates per treatment. Ninety days after growing in the respective salt treated soil with a Se concentration of 2 mg Se kg-1 soil, added as Na2SeO4, all plant species were completely harvested. Among the species tested, shoot and root dry matter yield of kenaf was most significantly (p<0.001) affected by the highest salt treatment and tall fescue and canola were the least affected species. Generally there was a decrease in tissue accumulation of Se with increasing salt levels, except that low levels of salinity stimulated Se accumulation in canola. Canola leaf and root tissue accumulated the highest concentrations of Se (315 and 80 mg Se kg-1 DM) and tall fescue the least (35 and 7 mg Se kg-1 DM). Total soil Se concentrations all harvest were significantly (p<0.05) lower for all species at all salt treatments. Removal of Se from soil was greatest by canola followed by birdsfoot trefoil, kenaf and tall fescue. Among the four species, canola was the best candidate for removing Se under the tested salinity conditions. Kenaf may be effective because of its large biomass production, while tall fescue and birdsfoot trefoil may be effective because they can be repeatedly clipped as perennial crops.  相似文献   

7.
Summary The apical membrane of the intestinal epithelium of the freshwater prawn,Macrobrachium rosenbergii, has been found to possess an apparently unique allosteric carrier mechanism for the simultaneous cotransport of sodium, chloride, and calcium from mucosal solution to cytosol. Influxes of the two monovalent ions individually were sigmoidal functions of their respective luminal concentrations, and their kinetics followed the Hill equation for homotropic cooperativity between identical binding ligands. Increased influx of chloride sigmoidally stimulated enhanced influx of sodium, suggesting the occurrence of heterotropic cooperativity between the dissimilar ligands. Calcium entry displayed hyperbolic (Michaelis-Menten) kinetics, and this cation was found to act both as an allosteric activator of sodium entry on the shared carrier system by associating with a discrete divalent cation binding site, as well as functioning as a possible competitive inhibitor of the monovalent cation binding process. Chloride was neither an allosteric activator nor inhibitor, but appeared to function mainly as an affinity modifier of the allosteric protein for sodium.  相似文献   

8.
9.
10.
The physiological responses of alfalfa (Medicago sativa L. cv. Gilboa) to salinity (100 mM NaCl) and some inorganic nutrients (K+, Ca2+ and N as NO3-) were investigated. Salinity caused a substantial reduction in biomass, carbon assimilation rate, stomatal conductance, water use efficiency, leaf area, relative growth rate, NO3- content and nitrate reductase activity, whereas, transpiration rate was slightly affected. Inclusion of K+, Ca2+ and N as NO3- in plant nutrient medium in combination or alone brought about a marked stimulation in control plants and moderated the salinity caused reductions in NaCl treated plants. In addition, plants also exhibited differences in these parameters at two growth stages. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Sodium chloride (NaCl) and potassium chloride (KCl) are both capable of inducing lethality and mutations when each is administered at a molarity of two for different lengths of time to logarithmic phase cells of the yeast Saccharomyces cerevisiae. Analysis of the revertants indicates that the reversions can be base substitutions, of both the transition and the transversion type, as well as frameshift mutations. At equal molarity, with the frequency of mutations as the criterion, KCl and NaCl are equally efficient in inducing all types of mutations.  相似文献   

12.
13.
14.
MSI accumulation induced by sodium chloride   总被引:9,自引:0,他引:9  
  相似文献   

15.
The effects of saline conditions on the K+ (86Rb), Na+ and Cl- uptake and growth of 6-day-old wheat (Triticum aestivum L. cv. GK Szeged) seedlings were studied in the absence and presence of Ca2+. It was found that on direct NaCl treatment the K+ uptake of the roots in the absence of Ca2+ declined significantly with increasing salinity. The reverse was true, however, in the case of NaCl pretreatment: seedlings grown under highly saline conditions (50 mM NaCl) absorbed more K+ than those pretreated with low levels of NaCl (1 or 10 mM NaCl). The data indicate a definite Na(+)-induced K+ uptake inhibition and/or feed-back regulation in the K+ uptake of roots under the above-mentioned growth conditions. As regards the Ca2+ effect, it was established that supplemental Ca2+ counteracts the unfavourable effect of saline conditions as concerns both the K+ uptake of the roots and the dry matter yield of the seedlings. The internal concentrations of Na+ and Cl- in the seedlings increased in proportion to increasing salinity. Marked differences were experienced, however, in the internal concentrations of Na+ and Cl- in the roots and shoots, respectively. It was concluded that under these experimental conditions the salt tolerance of wheat could be related to its capability of restricting the transport of Na+ at low and moderate levels to the shoots, where it is highly toxic.  相似文献   

16.
17.
Ascorbic acid increases the short circuit current (Isc) across the amphibian cornea when it is present at either surface of this epithelium. These effects were additive. The effect was greater when it was on the tear side. The response returned to baseline levels when the ascorbic acid was washed from the bathing media. The effect of ascorbic acid on Isc when it was on the aqueous humor side of the cornea could be blocked by bumetanide but that due to the vitamin's presence on the tear side was unchanged. The ascorbic acid could enter the tissue and crossed the cornea at similar rates in either direction. When the cornea was bathed by a Cl?-free solution or exposed to bumetanide, the rise in Isc observed with ascorbic acid on the tear side was equivalent to an increased Na+ flux from the tear to the aqueous humor side. In normal (Cl? present) Conway solution the rise in the Isc seen with ascorbic acid on the aqueous humor side was equal to an increased flux of Cl? from the aqueous to the tear surface. However, when ascorbic acid was present on the opposite, tear, side the increased Isc reflected a rise in both Cl? and Na+ transport, aqueous-to-tear side, and tear-to-aqueous side, respectively. Thiol reagents (tear side), including reduced glutathione (10?5 M), blocked the effect of ascorbic acid (10?3 M) providing they were added to the bathing solution prior to the vitamin. However, they had no effect once the response had been established. The effect of the reduced glutathione appeared to be of a non-competitive nature. Oxidized glutatione (10?4 M) (and cystamine) blocked the effect of ascorbic acid (10?3 M) when present on the tear side prior to the vitamin. However, they also increased the rate of decline of the response when added subsequently to the ascorbic acid. Amiloride (as low as 5·10?9 M), on the tear side but not the aqueous humor side, prevented the response to ascorbic acid but could not reverse it, once it was established. The possible nature of the effect of ascorbic acid is discussed in relation to its pharmacological interactions with thiol and disulfide reagents and amiloride.  相似文献   

18.
19.
20.
The enzymes cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) regulate the activity of cardiac ion channel proteins. In this study the whole-cell arrangement of the patch clamp technique was used to examine the effect of NaI on PKA-stimulated Cl- and Ca2+ channels in isolated guinea pig ventricular myocytes. Cl- currents (ICl) activated either by the beta-adrenergic agonist isoproterenol or the membrane-soluble cAMP analogue, 8-chlorphenylthio (8-CPT) cAMP, were greatly reduced in amplitude after substitution of an external solution containing 140 mM NaCl with a solution containing 140 mM NaI. This reduction was accompanied by a shift of -7 mV in the reversal potential (Erev) for ICl and could be reversed upon return to the NaCl external solution. Inhibition of ICl by NaI occurred in a concentration-dependent manner and was more pronounced for inward ICl (IC50 = 19 mM at -60 mV) than for outward ICl (IC50 = 60 mM at +60 mV). In contrast to ICl activated by PKA, ICl activated by PKC was slightly augmented in the presence of NaI and the Erev was found to shift by -15 mV. Based on these data, the relative permeability of I- to Cl- (PI/PCl) for this channel was calculated to be 1.79. NaI produced no change in the amplitude of inward calcium currents (ICa) recorded under basal conditions, but strongly inhibited ICa augmented by isoproterenol and 8-CPT cAMP, and during dialysis of cells with the catalytic subunit of PKA (CS). The in vitro incorporation of [gamma-32P]ATP into histone IIA and Kemptide, measured in the presence of PKA and cAMP, was not significantly different in assay mixtures containing salts of Cl- and I-. However, the ability of isoproterenol to augment basal ICa in whole-cell experiments was attenuated when experiments were carried out entirely in NaI external solution. Thus, the reduction in ICl and ICa observed in this study may result from a direct effect of I- on the phosphorylation/dephosphorylation of cardiac ion channel proteins or associated regulatory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号