首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four classes of Vibrio parahaemolyticus mutants defective in the phosphoenolpyruvate: glucose phosphotransferase system (PTS) are described. They were phenotypically different, and were defective in different PTS components. The components designated tentatively as II, I, III, and H were separated by gel filtration of a wild-type extract. Component II, which was specific for glucose and found in the particulate fraction, is probably membrane-bound, glucose-specific enzyme II. Both components I and H were soluble proteins, and the latter was relatively heat-stable. Component I was required for phosphorylation of glucose, trehalose, fructose, mannose, and mannitol. Component H was also required for phosphorylating all the above sugars except fructose. These and some additional findings strongly suggest that components I and H correspond to enzyme I and HPr, respectively. Component III, a soluble heat-stable protein, may be equivalent to the sugar-specific factor III found in other organisms, although it seems to participate in phosphorylating two sugars, glucose and trehalose. There were evidences that mutants defective in components I and III were deficient in cyclic adenosine 3',5'-monophosphate synthesis under certain conditions.  相似文献   

2.
The inducible, mannitol-specific Enzyme II of the phosphoenolpyruvate:sugar phosphotransferase system has been purified approximately 230-fold from Escherichia coli membranes. The enzyme, initially solubilized with deoxycholate, was first subjected to hydrophobic chromatography on hexyl agarose and then purified by several ion exchange steps in the presence of the nonionic detergent, Lubrol PX. The purified protein appears homogeneous by several criteria and probably consists of a single kind of polypeptide chain with a molecular weight of 60,000 (+/- 5%). In addition to catalyzing phosphoenolpyruvate-dependent phosphorylation of mannitol in the presence of the soluble enzymes of the phosphotransferase system, the purified Enzyme II also catalyzes mannitol 1-phosphate:mannitol transphosphorylation in the absence of these components. A number of other physical and catalytic properties of the enzyme are described. The availability of a stable, homogeneous Enzyme II should be invaluable for studying the mechanism of sugar translocation and phosphorylation catalyzed by the bacterial phosphotransferase system.  相似文献   

3.
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) found in enteric bacteria is a complex enzyme system consisting of a non-sugar-specific phosphotransfer protein called Enzyme I, two small non-sugar-specific phosphocarrier substrates of Enzyme I, designated HPr and FPr, and at least 11 sugar-specific Enzymes II or Enzyme II-III pairs which are phosphorylated at the expense of phospho-HPr or phospho-FPr. In this communication, evidence is presented which suggests that these proteins share a common evolutionary origin and that a fructose-specific phosphotransferase may have been the primordial ancestor of them all. The evidence results from an evaluation of 1) PTS protein sequence data; 2) structural analysis of operons encoding proteins of the PTS; 3) genetic regulatory mechanisms controlling expression of these operons; 4) enzymatic characteristics of the PTS systems; 5) immunological cross reactivities of these proteins; 6) comparative studies of phosphotransferase systems from evolutionarily divergent bacteria; 7) the nature of the phosphorylated protein intermediates; 8) molecular weight comparisons among the different Enzymes II and Enzyme II-III pairs; and 9) interaction studies involving different PTS protein constituents. The evidence leads to a unifying theory concerning the evolutionary origin of the system, explains many structural, functional, and regulatory properties of the phosphotransferase system, and leads to specific predictions which should guide future research concerned with genetic, biochemical, and physiological aspects of the system.  相似文献   

4.
The first protein in the bacterial phosphoenolpyruvate (PEP):sugar phosphotransferase system is the homodimeric 60-kDa enzyme I (EI), which autophosphorylates in the presence of PEP and Mg2+. The conformational stability and structure of the EI from Streptomyces coelicolor, EI(sc), were explored in the absence and in the presence of its effectors by using several biophysical probes (namely, fluorescence, far-ultraviolet circular dichroism, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry) and computational approaches. The structure of EI(sc) was obtained by homology modeling of the isolated N- and C-terminal domains of other EI proteins. The experimental results indicate that at physiological pH, the dimeric EI(sc) had a well-folded structure; however, at low pH, EI(sc) showed a partially unfolded state with the features of a molten globule, as suggested by fluorescence, far-ultraviolet circular dichroism, FTIR, and 8-anilino-1-naphthalene-sulfonic acid binding. The thermal stability of EI(sc), in the absence of PEP and Mg2+, was maximal at pH 7. The presence of PEP and Mg2+ did not change substantially the secondary structure of the protein, as indicated by FTIR measurements. However, quenching experiments and proteolysis patterns suggest conformational changes in the presence of PEP; furthermore, the thermal stability of EI(sc) was modified depending on the effector added. Our approach suggests that thermodynamical analysis might reveal subtle conformational changes.  相似文献   

5.
6.
A promoter-like mutation, ptsP160, has been identified which drastically reduces expression of the genes specifying two proteins, HPr and enzyme I, of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Salmonella typhimurium. This mutation lies between trzA, a gene specifying susceptibility to 1,2,4-triazole, and ptsH, the structural gene for HPr. It leads to a loss of active transport of those sugars that require the PTS for entry into the cell. Pseudorevertants of strains carrying this promoter-like mutation have additional lesions very closely linked to ptsP160 by transduction analysis and are noninducible for HPr and enzyme I above a basal level. Presumably, strains carrying ptsP160 are defective in the normal induction mechanism for HPr and enzyme I, and the pseudorevertants derived from them result from second-site initiation signals within or near this promoter-like element. The induction of HPr and enzyme I above their noninduced levels apparently is not required for transport of at least one PTS sugar, methyl alpha-d-glucopyranoside, since this sugar is taken up by the pseudorevertants at the same rate as by the wild type. The existence of a promoter-like element governing the coordinate inducibility of both HPr and enzyme I suggests that ptsH and ptsI constitute an operon. Wild-type levels of a sugar-specific PTS protein, factor III, are synthesized in response to the crr(+) gene in both a ptsP160 strain and its pseudorevertants; this suggests that the crr(+) gene has its own promoter distinct from ptsP.  相似文献   

7.
8.
Glucose is a universal energy source and a potent inducer of surface colonization for many microbial species. Highly efficient sugar assimilation pathways ensure successful competition for this preferred carbon source. One such pathway is the phosphoenolpyruvate phosphotransferase system (PTS), a multicomponent sugar transport system that phosphorylates the sugar as it enters the cell. Components required for transport of glucose through the PTS include enzyme I, histidine protein, enzyme IIAGlc, and enzyme IIBCGlc. In Escherichia coli, components of the PTS fulfill many regulatory roles, including regulation of nutrient scavenging and catabolism, chemotaxis, glycogen utilization, catabolite repression, and inducer exclusion. We previously observed that genes encoding the components of the Vibrio cholerae PTS were coregulated with the vps genes, which are required for synthesis of the biofilm matrix exopolysaccharide. In this work, we identify the PTS components required for transport of glucose and investigate the role of each of these components in regulation of biofilm formation. Our results establish a novel role for the phosphorylated form of enzyme I in specific regulation of biofilm-associated growth. As the PTS is highly conserved among bacteria, the enzyme I regulatory pathway may be relevant to a number of biofilm-based infections.  相似文献   

9.
We report bioinformatic analyses of the largest superfamily of integral membrane permeases of the bacterial phosphotransferase system (PTS), the Enzyme IIC constituents of the Glc superfamily. Phylogenetic analyses reveal that this superfamily consists of five equally distant families, the Glucose (Glc), beta-Glucoside (Bgl), Fructose (Fru), Mannitol (Mtl) and Lactose (Lac) families. Average hydropathy, amphipathicity and similarity plots were generated for these five families as well as for the entire superfamily. Charged residue distribution was analyzed, and the most conserved sequence motif, common to all five families, was identified. The results show that the members of all five families exhibit similar average hydropathy plots with regions of average amphipathicity and relative conservation also being similar. Evidence is presented suggesting that the Glucitol (Gut) family of Enzyme IIC constituents is a distant member of the Glc superfamily. Based on our analyses we offer a topological model that resembles, but differs in detail from the two previously proposed models.  相似文献   

10.
This review will examine the connection between the bacterial phosphoenolpyruvate:sugar phosphotransferase system and biofilms. We will consider both the primary role of the phosphoenolpyruvate:sugar phosphotransferase system in sugar uptake by biofilm cells and its possible role in regulatory processes in cells growing as biofilms, and in establishment and maintenance of these biofilms.  相似文献   

11.
The genes encoding the proteins of the fructose-specific phosphotransferase system (PTS) of Rhodobacter capsulatus were sequenced, and the deduced amino acyl sequences of the energy-coupling protein, Enzyme I, and the transport protein, Enzyme IIfru, were compared with published sequences. Enzyme I was found to be homologous to pyruvate:phosphate dikinase of plants, while Enzyme IIfru was found to be homologous to the insulin-responsive glucose facilitator of mammals. The evolutionary and functional implications of these findings are discussed.  相似文献   

12.
Enzyme I of the bacterial phosphoenolpyruvate:sugar phosphotransferase system can be phosphorylated by PEP on an active-site histidine residue, localized to a cleft between an alpha-helical domain and an alpha/beta domain on the amino terminal half of the protein. The phosphoryl group on the active-site histidine can be passed to an active-site histidine residue of HPr. It has been proposed that the major interaction between enzyme I and HPr occurs via the alpha-helical domain of enzyme I. The isolated recombinant alpha-helical domain (residues 25-145) with approximately 80% alpha-helices as well as enzyme I deficient in that domain [EI(DeltaHD)] with approximately 50% alpha-helix content from M. capricolum were used to further elucidate the nature of the enzyme I-HPr complex. Isothermal titration calorimetry demonstrated that HPr binds to the alpha-helical domain and intact enzyme I with = 5 x 10(4) and 1.4 x 10(5) M(-)(1) at pH 7.5 and 25 degrees C, respectively, but not to EI(DeltaHD), which contains the active-site histidine of enzyme I and can be autophosphorylated by PEP. In vitro reconstitution experiments with proteins from both M. capricolum and E. coli showed that EI(DeltaHD) can donate its bound phosphoryl group to HPr in the presence of the isolated alpha-helical domain. Furthermore, M. capricolum recombinant C-terminal domain of enzyme I (EIC) was shown to reconstitute phosphotransfer activity with recombinant N-terminal domain (EIN) approximately 5% as efficiently as the HD-EI(DeltaHD) pair. Recombinant EIC strongly self-associates ( approximately 10(10) M(-)(1)) in comparison to dimerization constants of 10(5)-10(7) M(-)(1) measured for EI and EI(DeltaHD).  相似文献   

13.
14.
15.
Sugars transported by a bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) require two soluble proteins: HPr, a low-molecular-weight phosphate-carrier protein, and enzyme I. The structural genes coding for HPr (ptsH) and Enzyme I (ptsI) are shown to be cotransducible in Salmonella typhimurium. The gene order of this region of the Salmonella chromosome is cysA-trzA-ptsH-ptsI...(crr). A method for the isolation of trzA-pts deletion is described. One class of pts deletions extends through ptsH and into ptsI; a second class includes both ptsH and ptsI and extends into or through the crr gene. The crr gene either codes for or regulates the synthesis of a third PTS protein (factor III) which is sugar-specific. A hypothesis is presented for a mechanism of deletion formation.  相似文献   

16.
17.
Studies on the reversion characteristics of Escherichia coli strains carrying various mutations in the pts region have led to the recognition of a mutation, suc-1, with a previously undescribed phenotype. Strains carrying the suc-1 mutation grow normally on most sources of carbon but are unable to utilize succinate effectively. The suc-1 mutation can be separated genetically from the tightly linked ptsI6 mutation. Reversion of suc-1 mutants for growth on succinate yields interesting classes of suppressor mutations.  相似文献   

18.
Enzyme IIA(Glc), encoded by the crr gene of the phosphoenolpyruvate:sugar phosphotransferase system, plays an important role in regulating intermediary metabolism in Escherichia coli ("catabolite repression"). One function involves inhibition of inducible transport systems ("inducer exclusion"), and with lactose permease, a galactoside is required for unphosphorylated IIA(Glc) binding to cytoplasmic loops IV/V and VI/VII [Sondej, M., Sun, J. et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 3525-3530]. With inside-out membrane vesicles containing the permease, [(125)I]IIA(Glc) binding promoted by melibiose exhibits an affinity (K(D)(IIA)) of approximately 1 microM and a stoichiometry of one mole of IIA(Glc) per six moles of lactose permease. Both the quantity of [(125)I]IIA(Glc) bound and the sugar concentration required for half-maximal IIA(Glc) binding (K(0.5)(IIA)(sug)) was measured for eight permease substrates. Differences in maximal IIA(Glc) binding are observed, and the K(0.5)(IIA)(sug) does not correlate with the affinity of LacY for sugar. Furthermore, K(0.5)(IIA)(sug) does not correlate with sugar affinities for various permease mutants. IIA(Glc) does not bind to a mutant (Cys154 --> Gly), which is locked in an outwardly facing conformation, binds with increased stoichiometry to mutant Lys131 --> Cys, and binds only weakly to two other mutants which appear to be predominantly in either an outwardly or an inwardly facing conformation. When the latter two mutations are combined, sugar-dependent IIA(Glc) binding returns to near wild-type levels. The findings suggest that binding of various substrates to lactose permease results in a collection of unique conformations, each of which presents a specific surface toward the inner face of the membrane that can interact to varying degrees with IIA(Glc).  相似文献   

19.
The glucose transporter of Escherichia coli couples translocation with phosphorylation of glucose. The IICB(Glc) subunit spans the membrane eight times. Split, circularly permuted and cyclized forms of IICB(Glc) are described. The split variant was 30 times more active when the two proteins were encoded by a dicistronic mRNA than by two genes. The stability and activity of circularly permuted forms was improved when they were expressed as fusion proteins with alkaline phosphatase. Cyclized IICB(Glc) and IIA(Glc) were produced in vivo by RecA intein-mediated trans-splicing. Purified, cyclized IIA(Glc) and IICB(Glc) had 100% and 30% of wild-type glucose phosphotransferase activity, respectively. Cyclized IIA(Glc) displayed increased stability against temperature and GuHCl-induced unfolding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号