首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of unscheduled DNA synthesis has been considered as a suitable endpoint for the screening of genotoxic agents. Experimentally, unscheduled DNA synthesis is most frequently measured by autoradiography. The purpose of this report was to examine the usefulness of the liquid scintillation counting technique in measuring unscheduled DNA synthesis response in isolated rat hepatocytes. The various liquid scintillation counting-based unscheduled DNA synthesis assay procedures were examined according to the following groupings: (1) procedures based on the acid precipitation of cellular macromolecules, (2) procedures based on isopycnic gradient centrifugation of solubilized cells, (3) procedures based on nuclei isolation in conjunction with other DNA purification methods, and (4) procedures based on the selective retention of hepatocellular DNA. Limited cases in which test chemicals gave positive unscheduled DNA synthesis response in liquid scintillation counting-based assays and negative unscheduled DNA synthesis response in autoradiography-based assays are presented. It is concluded that liquid scintillation counting-based unscheduled DNA synthesis assays represent an appropriate system for inclusion in carcinogenicity and mutagenicity testing programs.Abbreviations 2-AAF 2-acetylaminofluorene - 2-AF 2-aminofluorene - AFB1 aflatoxin B1 - ARG autoradiography - DMN dimethylnitrosamine - LSC liquid scintillation counting - MMS methyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - 4-NQO 4-nitroquinoline-1-oxide - PCA perchloric acid - TCA trichloroacetic acid - UDS unscheduled DNA synthesis  相似文献   

2.
When Syrian hamster embryo cells were pretreated with a weak chemical carcinogen, methyl methanesulfonate (MMS) or ethyl methanesulfonate (EMS), or with a physical agent such as X-irradiation prior to being exposed to a potent cancer-producing chemical, transformation (crisscrossing of cells not seen in control) occurred up to nine times more often than when the cells were not pretreated. The degree of enhancement appears independent of carcinogen dose. The transformation frequency associated with the carcinogens benzo(a)pyrene (BP), dimethylbenz(a)anthracene (DMBA), 3-methylcholanthrene (MCA), N-acetoxy-2-acetylaminofluorene (AcAAF), and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was increased. There are similarities in the enhancement produced by pretreatment of hamster cells with X-irradiation and with alkylating agents: with both, maximum enhancement occurred approx. 48 h after treatment and lethality attributable to the pretreatment was 10–20% relative to control. However, enhancement produced by X-irradiation pretreatment was slightly greater than that obtained with MMS. The exact cause of the enhancement in transformation resulting from the interaction of these agents is not yet known, but the enhancement associated with MMS pretreatment cannot be related to partial cell synchronization or disruption in the cell cycle. Hamster cells pretreated with 250 μM of MMS demonstrated no alteration in normal cel DNA synthesis through 48-h post-treatment. Analysis of unscheduled DNA synthesis by autoradiography or by alkaline sucrose gradients indicated that the damaged DNA was rapidly repaired after treatment. Therefore, repair of DNA damage as it is now understood is probably not involved.  相似文献   

3.
The effects of cryopreservation and long-term storage on substrate-specific cytochrome P45O-dependent activities and unscheduled DNA synthesis were studied in freshly isolated and cryopreserved hepatocytes derived from adult male Fischer 344 and Sprague-Dawley rats. Primary rat hepatocytes were isolated via an in situ collagenase perfusion technique, cryopreserved at –196°C, and thawed at 5 weeks and 104 and 156 weeks post-freezing. In Fischer 344 and Sprague-Dawley rats, cryopreserved hepatocytes were equivalent or similar to freshly isolated hepatocytes in substrate-specific activities for 7-ethoxyresorufin-0-deethylase and dimethylnitrosamine-N-demethylase and unscheduled DNA synthesis responses. No significant differences in activities toward 7-ethoxyresorufin-0-deethylase and dimethylnitrosamine-N-demethylase, the substrate-specific activities for cytochromes P4501A1 and P4501A2 and cytochrome P4502E1, respectively, were observed between freshly isolated and cryopreserved hepatocytes. Similar unscheduled DNA synthesis responses, a measure of DNA damage and repair, were observed after exposure to the genotoxic carcinogens 2-acetylaminofluorene, 7,12-dimethyEbenz[a]anthracene, and dimethylnitrosamine; although some decreases were also observed in Fischer 344 hepatocytes after 104 weeks and Sprague-Dawley hepatocytes after 156 weeks in the highest concentrations tested. These results suggest that cryopreserved hepatocytes, stored for extended periods of time in liquid nitrogen, are metabolically equivalent to freshly isolated hepatocytes in their ability to activate precarcinogens.Abbreviations 2-AAF 2-acetylaminofluorene - DDH2O distilled deionized water - DMBA 7,12-dimethyIbenz[a]anthracene - DMN dimethylnitrosamine - DMNA dimethylnitrosamine-N-demethylase - DMSO dimethyl sulfoxide - EROD 7-ethoxyresorufin-O-deethylase - F344 Fischer 344 - FBS fetal bovine serum - %IR percentage of cells in repair - LN2 liquid nitrogen - LSD least significant difference - CG cytoplasmic grains - NNG net nuclear grains - SD Sprague-Dawley - UDS unscheduled DNA synthesis - WE Williams' Medium E  相似文献   

4.
A sensitive assay for quantitating ‘unscheduled DNA synthesis’ (repair synthesis) in transformed human amnion (AV3) cells has been developed. The combined use of hydroxyurea and arginine-deficient culture medium enabled the detection of 10–20 fold increases in ‘unscheduled DNA synthesis’ after treatment with N-acetoxy-2-acetylaminofluorene or ultraviolet light. The technique allows the detection of ‘DNA repair synthesis’ following treatment with extremely low doses of mutagens and carcinogens.  相似文献   

5.
A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells.UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle.Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine.The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.  相似文献   

6.
The incorporation of [3H]thymidine into DNA due to unscheduled DNA synthesis (UDS) induced by N-OH-2-acetylaminofluorene (N-OH-AAF), aflatoxin B1 (AFB1), ethyl methanesulfonate (EMS) and ultra-violet light was quantitated by autoradiography and by scintillation spectrometry on acid precipitable macromolecules or DNA insolated by isopycnic banding in cesium chloride (CsCl). Dose-dependent increases in UDS due to N-OH-AAF and AFB1 treatment were found. Only 2-fold increases at the highest dose levels were found, however, when incorporated [3H]thymidine was quantitated by scintillation spectrometry. Seven, 11, and 25-fold increases in UDS induced by AFB1, N-OH-AAF and ultra-violet light, respectively, were found when incorporated [3H]thymidine was quantitated by autoradiography, indicating a high sensitivity for detecting ‘long patch’ repair by this technique. Scintillation spectrometry was completely ineffective in detecting EMS-induced UDS, whereas autoradiography demonstrated a small, but significant induction in [3H]thymidine incorporation at high dose levels. The non-proliferative nature of the primary hepatocyte prohibits the uniform radioactive prelabeling of DNA, necessary in other techniques, for the detection of ‘short patch’ repair induced by compounds such as EMS. Therefore, the sensitivity of the primary cultured rat hepatocyte in conjunction with UDS for detecting DNA damage caused by mutagens and carcinogens which induce ‘short patch’ repair may be limited to the autoradiographic analysis of the unscheduled incorporation of [3H]thymidine.  相似文献   

7.
Escherichia coli cells made permeable to deoxynucleoside triphosphates by brief treatment with toluene (permeablized) were used to measure the effect of the following chemical alkylating agents on either DNA replication or DNA repair synthesis: methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG). Replication of DNA in this pseudo-in vivo system was completely inhibited 10–15 min after exposure to MMS at concentrations of 5 mM or higher or to MNU or MNNG at concentrations of 1 mM or higher. The ethyl derivatives of the alkylating agents were less inhibitory than their corresponding methyl derivatives, and inhibition of DNA replication occurred in the following order: EMS < ENNG < ENU. Maximum inhibition of DNA replication by all of the alkylating agents tested except EMS occurred at a concentration of 20 mM or lower. The extent of replication in cells exposed to EMS continued to decrease with concentrations of EMS up to 100 mM (the highest concentration tested).The experiments in which the inhibition of DNA replication by MMS, MNU, or MNNG was measured were repeated under similar assay conditions except that a density label was included and the DNA was banded in CsCl gradients. The bulk of the newly synthesized DNA from the untreated cells was found to be of the replicative (semi-conservative) type. The amount of replicative DNA decreased with increasing concentration of methylating agent in a manner similar to that observed in the incorporation experiments.Polymerase I (Pol I)-directed DNA repair synthesis induced by X-irradiation of permeablized cells was assayed under conditions that blocked the activity of DNA polymerases II and III. Exposure of cells to MNNG or ENNG at a concentration of 20 mM resulted in reductions in Pol I activity of 40 and 30%, respectively, compared with untreated controls. ENU was slightly inhibitory to Pol I activity, while MMS, EMS, and MNU all caused some enhancement of Pol I activity.These data show that DNA replication in a pseudo-in vivo bacterial system is particularly sensitive to the actions of known chemical mutagens, whereas DNA repair carried out by the Pol I repair enzyme is much less sensitive and in some cases apparently unaffected by such treatment. Possible mechanisms for this differential effect on DNA metabolism and its correlation with current theories of chemically induced mutagenesis and carcinogenesis are discussed.  相似文献   

8.
Chemically induced DNA fragmentation and unscheduled DNA synthesis were determined in gamma-glutamyltranspeptidase (GGT)-positive and GGT-negative hepatocytes isolated from rat livers subjected to a multistage hepatocarcinogenesis regimen (Solt-Farber), which included 0.05% phenobarbital promotion for 6 weeks (early) or 6 months (late). The results indicated that there was DNA damage in untreated GGT-positive and GGT-negative hepatocytes with either period of promotion compared with normal hepatocytes; however, no statistical difference could be seen between GGT-positive and GGT-negative hepatocytes. DNA damage induced in vitro by the activation-dependent carcinogen dimethylnitrosamine was much less in GGT-positive hepatocytes than in GGT-negative hepatocytes or normal hepatocytes. No significant difference in DNA damage was seen in both GGT-positive and GGT-negative cell populations following treatment with the activation-independent carcinogen ethylnitrosourea (ENU), although DNA damage of GGT-positive hepatocytes was less than that of normal hepatocytes. The background of unscheduled DNA synthesis in both GGT-positive and GGT-negative hepatocytes at either time of promotion was higher than that of normal hepatocytes. The capacity for DNA repair in GGT-positive hepatocytes appeared to be lower than that in GGT-negative hepatocytes. GGT-negative hepatocytes exhibited a lower capacity for DNA repair than that of normal hepatocytes in terms of the rate of unscheduled DNA synthesis elicited by dimethylnitrosamine and ethylnitrosourea in vitro.  相似文献   

9.
The in vitro unscheduled DNA synthesis (UDS) assay measures DNA repair (incorporation of [3H]thymidine) following in vitro treatment of rat primary hepatocytes. The autoradiographic method was used to detect UDS by counting developed silver grains in the photographic emulsion overlaying nuclei and cytoplasmic areas of the hepatocytes. In this communication we report results using 4 scoring methods: (1) the most heavily labeled cytoplasmic areas adjacent to the nucleus (our standard method), (2) the cytoplasmic area left of the nucleus, (3) the cytoplasmic areas left and right of the nucleus, and (4) 2 cytoplasmic areas whose positions were selected at random. Rat primary hepatocyte cultures treated with a medium control, a solvent control (dimethyl sulfoxide) and 5 known genotoxic chemicals (2-acetylamino-fluorene, dimethylnitrosamine, diethylnitrosamine, methyl methanesulfonate and ethyl methanesulfonate) were scored using these 4 methods. The average or maximum cytoplasmic grain count was subtracted from the nuclear grain count to yield net grains/nucleus (NG). In general, NG counts for Methods 2,3 and 4 were similar, although shifted about 3–10 grains higher than Method 1 for controls and most treated groups. Methods 2, 3 and 4 showed more experiment-to-experiment variability in sensitivity for detecting statistically significant increases in treated groups than did our standard method. Thus, the alternative methods afforded no consistent improvements in sensitivity or reduction of variability for this assay. Subtraction of the average or the highest cytoplasmic count had virtually no effect on the sensitivity of the assay, but simply requires an appropriate adjustment of the criteria for a positive response.  相似文献   

10.
The activity of chemical-induced unscheduled DNA synthesis was evaluated in hepatocyte primary cultures from Fischer 344 and Sprague-Dawley rats over a period of two years. In this two-year study hepatocytes from both sexes and strains were prepared from animals 2, 8, 14, 20 and 25 months of age and UDS was measured by autoradiography following treatment with N-methyl-AP-vitro-N-nitrosoguanidine and 2-acetylaminofluorine. A dose-related positive response occurred for both compounds throughout the study in hepatocytes from male and female Fischer rats and male Sprague-Dawley rats. The magnitude of the response was greatest in hepatocytes from male Fischer rats and a markedly lower response in unscheduled DNA synthesis occurred in all cultures prepared from animals of both strains and sexes at 20 and 25 months of age. Hepatocytes from female Sprague-Dawley rats showed a low level of unscheduled DNA synthesis with N-methylN-vitro-N-nitrosoguanidine throughout the study. The most striking finding was the absence of a UDS response to 2-acetylaminofuorene by hepatocytes from Sprague-Dawley females at the 8, 14, 20 or 25 month periods. The results indicate an age-related decrease in chemical-induced unscheduled DNA synthesis activity among rats.Abbreviations 2AAF 2-acetylaminofluorine[deDMSO] - dimethylsulfoxide 3H-TdR, meth yl-3H-thymidine - MNNG N-methyl-N-vitro-N-nitrosoguanidine - UDS unscheduled DNA synthesis  相似文献   

11.
The results presented in this report demonstrate that an 18–20 hour exposure/3H-thymidine DNA labeling period is superior to a 4 hour incubation interval for general genotoxicity screening studies in the rat primary hepatocyte DNA repair assay. When DNA damaging agents which give rise to bulky-type DNA base adducts such as 2-acetylaminofluorene, aflatoxin Bi and benzidine were evaluated, little or no difference was observed between the 4 hour or an 18–20 hour exposure/labeling period. Similar results were also noted for the DNA ethylating agent diethylnitrosamine. However, when DNA damaging chemicals which produce a broader spectrum of DNA lesions were studied, differences in the amount of DNA repair as determined by autoradiographic analysis did occur. Methyl methanesulfonate and dimethylnitrosamine induced repairable DNA damage that was detected at lower dose levels with the 18–20 hour exposure/labeling period. Similar results were also observed for the DNA cross-linking agents, mitomycin C and nitrogen mustard. Ethyl methanesulfonate produced only a marginal amount of DNA repair in primary hepatocytes up to a dose level of 10–3M during the 4 hour incubation period, whereas a substantial amount of DNA repair was detectable at a dose level of 2.5 × 10–4M when the 18–20 hour exposure/labeling period was employed. The DNA alkylating agent 4-nitroquinoline-1-oxide, which creates DNA base adducts that are slowly removed from mammalian cell DNA, induced no detectable DNA repair in hepatocytes up to a toxic dose level of 2 × 10–5M with the 4 hour exposure period, whereas a marked DNA repair response was observed at 10–5M when the 18–20 hour exposure/labeling period was used.Abbreviations 2AAF 2-acetylaminofluorene - AB1 aflatoxin B1 - BENZ benzidine - DEB diepoxybutane - DEN diethylnitrosamine - DMN dimethylnitrosamine - EMS ethyl methanesulfonate - MITC mitomycin C - MMS methyl methanesulfonate - NG mean net nuclear grain counts - NM nitrogen mustard - 4NQO 4-nitroquinoline-N-oxide  相似文献   

12.
2 hair dyes, HC Blue No. 1 and HC Blue No. 2, were evaluated for the in vitro induction of unscheduled DNA synthesis (UDS) in primary hepatocytes of rat, mouse, hamster, rabbit and monkey. NC Blue No. 1, which is identified as a carcinogen by the National Toxicology Program, induced UDS in all 5 systems. HC Blue No. 2, which is identified as a non-carcinogen, induced UDS in rat, mouse, hamster and rabbit primary hepatocytes. 3-Methylcholanthrene and methyl methanesulfonate were used as positive controls to determine the sensitivity of the test system.  相似文献   

13.
Treatment of Syrian hamster embryo cells with diverse classes of chemical carcinogens enhanced transformation by a carcinogenic simian adenovirus, SA7. Optimal enhancement was a function of time of chemical addition in relation to time of virus addition and cell transfer. Aflatoxin B1 (AFB1) and the polycyclic hydrocarbons, benzo(a)pyrene (B(a)P), 3-methylcholanthrene (MCA), and 7,12-dimethylbenz(a)anthracene (DMBA) enhanced SA7 transformation when added prior to virus, but inhibited transformation when added after virus adsorption and cell transfer. The enhancement of SA7 transformation was maximal when cytosine arabinoside, caffeine and 6-acetoxy-benzo(a)pyrene (6-ac-B(a)P) were added after virus, but minimal when added before virus. A third class of chemicals, including β-propiolactone (β-PL), methyl methanesulfonate (MMS), N-acetoxy-2-acetylaminofluorene (Ac-AAF), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and methylazoxymethanol acetate (MAM-ac), enhanced SA7 transformation added before, or after, virus inoculation and cell transfer. All chemicals, which induced changes in DNA sedimentation in alkaline sucrose gradients and unscheduled DNA (repair) synthesis in hamster cells, increased the frequency of SA7 transformation. However, several chemicals such as dibenz(a,h)anthracene (DB(a,h)A), benzo(e)pyrene (B(e)P), cytosine arabinoside, and caffeine enhanced SA7 transformation but did not induce DNA sedimentation changes or repair. Chemicals that cause DNA damage, which can be repaired by hamster cells, may enhance viral transformation by providing additional sites for integration of viral DNA during the repair process. Chemicals that apparently do not induce DNA repair synthesis may enhance viral transformation by incorporation of viral DNA into gaps in cell DNA at sites of unrepaired damage during scheduled DNA synthesis.  相似文献   

14.
Hydrazine was found to be mutagenic for yeast (Saccharomyces cerevisiae) at exposures (concentration × time) ranging over nearly three orders of magnitude. Little or no forward mutation from CAN1 to can1 was detectable upon immediate plating following treatment in neutral buffer suspension. Post-treatment cell division in yeast extract peptone dextrose complex growth medium was required for expression of induced mutation to canavanine resistance. Frequencies of induced mutation rose to levels approximately 10-fold higher than spontaneous levels for exposures between 0.1 and 12.0 min mol/l. Survival remained at 100%. For exposures greater than 80 min mol/l viability and mutation frequency began to decrease sharply. By contrast, single treatments of ethyl methanesulfonate, methyl methanesulfonate, N-methyl-N′-nitro-N-nitro-soguanidine, nitrous acid, hydroxylamine, and ultraviolet light were able to increase mutation frequency with this system upon immediate assay. Further growth-dependent increases in mutation frequency were not observed with HA and UV.Expression of HZ-induced mutation was detectable after treated cells had undergone less than one population doubling in YEPD. Such mutation expression could be blocked by the inhibitors cycloheximide and hydroxyurea, which block protein synthesis and DNA synthesis respectively. Results were similar to those obtained previously with Haemophilus influenzae and similarly suggest that, in this eukaryote, HZ-induced lesions lead to mutation by causing base mispairing at DNA replication rather than by means of an error-prone repair mechanism.  相似文献   

15.
Hepatocytes were isolated from Fischer rats by perfusion and tested for unscheduled DNA synthesis (UDS) induction or cryopreserved for long-term storage at -196 degrees C. Thawed cells could be recovered at greater than 90% viabilities, and were cultured on fibronectin-coated coverslips. The cells attached and spread, and could be used for UDS assessment. Data were compared for fresh and frozen cells from the same animal. Results obtained for net nuclear grains and dose response were similar for the fresh and frozen cells, in response to the carcinogenic compounds methyl methanesulfonate and 7,12-dimethylbenzanthracene, benzo[a]pyrene, and N-methyl-N'-nitro-N-nitrosoguanidine.  相似文献   

16.
The genotoxicity of zinc was examined in 4 short-term mutagenicity assays. Zinc acetate produced dose-related positive responses in the L5178Y mouse lymphoma assay and an in vitro cytogenetic assay with Chinese hamster ovary cells, but was negative in the Salmonella mutation assay and did not induce unscheduled DNA synthesis in primary cultures of rat hepatocytes. Zinc-2,4-pentanedione produced frameshift mutations in Salmonella tester strains TA1538 and TA98, but did not induce unscheduled DNA synthesis in primary cultures of rat hepatocytes. The effect of ligand binding of zinc in the in vitro test systems is discussed.  相似文献   

17.
The present study explores the possibilities of using specific amino acids in haemoglobin for tissue dosimetry of alkylating agents. The well-known directly alkylating compound methyl methanesulfonate has been used as a model compound.In one experiment 3H-labelled methyl methanesulfonate was given to mice intraperitoneally at three dose levels. The degree of alkylation of haemoglobin exhibited a linear dependence on the quantity of methyl methanesulfonate injected. The degree of alkylation of guanine-N-7 in DNA indicated a slight positive deviation from linearity at high doses.After a single injection the degree of alkylation of cysteine-S and histidine-N-3 in haemoglobin decreased linearly with time reaching the value zero after about 40 days (the life-time of the erythrocytes in the mouse). This demonstrates a stability of these alkylated products, which is fundamental to their use as integral dose monitors.In a second experiment mice were treated with methyl methanesulfonate once a week over a period of 8 weeks. The experiment demonstrated an accumulation of alkylated groups in haemoglobin in agreement with expectation.A method for the quantitative determination of S-methylcysteine in a protein hydrolysate by gas chromatography was developed.  相似文献   

18.
The formation of ethoxyfluorescein and fluorescein from diethoxyfluorescein by isolated rat hepatocytes has been used as a basis for separating such cells dependent on their mixed function oxidase activities by fluorescence-activated flow cytometry. Five equal fractions defined by computer-generated regions were isolated. Non-viable cells with low fluorescence (region 1) represented 10-15% of the population, while the remainder with higher mixed function oxidase activities (regions 2-5), were greater than 95% viable by Trypan Blue exclusion. In region 1, 30% of the viable cells were binucleate, 67% diploid while in region 5, 13% were binucleate and 69% tetraploid. At 3 h after sorting, following attachment to glass coverslips, exposure of cells to methyl methanesulphonate, retrorsine or norethindrone resulted in unscheduled DNA synthesis which was 2-fold higher in the tetraploid-rich region 5, while aflatoxin B1, benzo[a]pyrene or 2-acetylaminofluorene caused a 5-fold increase in unscheduled DNA synthesis in these cells, relative to the diploid-rich hepatocytes in region 2.  相似文献   

19.
Even though DNA alkylating agents have been used for many decades in the treatment of cancer, it remains unclear what happens when replication forks encounter alkylated DNA. Here, we used the DNA fibre assay to study the impact of alkylating agents on replication fork progression. We found that the alkylator methyl methanesulfonate (MMS) inhibits replication elongation in a manner that is dose dependent and related to the overall alkylation grade. Replication forks seem to be completely blocked as no nucleotide incorporation can be detected following 1 h of MMS treatment. A high dose of 5 mM caffeine, inhibiting most DNA damage signalling, decreases replication rates overall but does not reverse MMS-induced replication inhibition, showing that the replication block is independent of DNA damage signalling. Furthermore, the block of replication fork progression does not correlate with the level of DNA single-strand breaks. Overexpression of O6-methylguanine (O6meG)-DNA methyltransferase protein, responsible for removing the most toxic alkylation, O6meG, did not affect replication elongation following exposure to N-methyl-N′-nitro-N-nitrosoguanidine. This demonstrates that O6meG lesions are efficiently bypassed in mammalian cells. In addition, we find that MMS-induced γH2AX foci co-localise with 53BP1 foci and newly replicated areas, suggesting that DNA double-strand breaks are formed at MMS-blocked replication forks. Altogether, our data suggest that N-alkylations formed during exposure to alkylating agents physically block replication fork elongation in mammalian cells, causing formation of replication-associated DNA lesions, likely double-strand breaks.  相似文献   

20.
Polymorphonuclear leucocytes have been induced to synthesize new DNA by exposure to UV light. Preliminary observations (not included) also indicate that 6-MeV electrons and incubation with the radiomimetic agent methyl methanesulfonate (MMS) are effective agents for inducing unscheduled DNA synthesis (UDS). A study of the kinetics of UV-induced DNA synthesis suggests that there are at least two processes operating, one fast and essentially complete within the first 1–2 h and the second lasting at least 8 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号