首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hormone angiotensin II (AII) is a vascocontrictor known to participate in the natural regulation of blood pressure via the renin-angiotensin system. A third-order model was developed which describes the dynamics of venous and arterial plasma AII concentrations (PAC) and mean arterial blood pressure (BP) during acute constant rate AII infusion experiments. The model is calibrated using approximate blood circulation rates and steady-state PAC and BP data for published experiments in sheep. Analysis of the dynamic model demonstrates that local changes in PAC during the first several minutes of acute infusion are characterized by the comparatively rapid distribution of exogenous AII making its forward passage across the blood circulation, combined with the more gradual elevation of exogenous AII recycled through the circulation. This analysis explains the observed divergence in physiological levels of venous and arterial PAC at steady state in terms of the monotonic net clearance of elevated levels of circulating AII along the circulatory path between the point of infusion and the two sites at which the PAC measurements are taken. The model suggests that the differing arteriovenous AII concentration ratios and differing PAC and BP relationships reported for different dose-response experiments may be explained in part by differences in the specific infusion and measurement sites employed in those experiments.  相似文献   

2.
We investigated whether the pressor effects of systemically administered angiotensin II (AII) influence ACTH secretion. Adrenalectomized barbiturate-anesthetized mongrel dogs with constant low resting cortisol concentrations due to slow constant cortisol infusion received either bolus injections (2.5 micrograms kg-1) or 15-min i.v. infusions of a low dose (12.5 ng kg-1min-1) of AII during which blood samples were taken for ACTH and cortisol determinations. In sequential continuous experiments in each dog, blood pressure was allowed to increase in response to AII administration or was controlled by means of concurrent i.v. injections or infusions of the hypotensive drug papaverine, or by blood withdrawal from the vena cava. When the arterial pressure rise induced by AII was substantially attenuated or prevented by papaverine administration or blood withdrawal, mean ACTH secretion rates increased 400-800% and mean ACTH concentrations increased by 280-500%. On the other hand, AII administration alone caused large increases in mean arterial blood pressure but did not increase ACTH secretion significantly above control levels. These data suggest that when endogenous AII levels are elevated without a concurrent increase in blood pressure, as occurs during hypovolemia or sodium depletion, AII may have a significant influence on ACTH secretion.  相似文献   

3.
In spontaneously hypertensive rats (SHR) and their normotensive Wistar-Kyoto controls (WKY), prolonged intravenous administration of angiotensin II (AII, 0.2 microgram X kg-1 X min-1 for 3h) resulted in similar increases in arterial blood pressure. Heart rate decreased in WKY and increased in SHR. At the end of the infusion, blood pressure dropped substantially in SHR, but not in WKY: at 5 h after AII withdrawal, blood pressure in SHR had fallen from a control value of 172 +/- 3.3 to 146 +/- 3.9 mmHg (p less than 0.01), whereas pressure in WKY had fallen from 116 +/- 3.0 to 107 +/- 4.2 mmHg (statistically non significant). Thus, pressure at 5 h after AII withdrawal was still substantially higher (p less than 0.01) in the SHR than in the WKY. The results demonstrate that the fall in blood pressure following withdrawal of a prolonged infusion of AII in SHR is much less than that reported to occur following withdrawal of a prolonged infusion of vasopressin (AVP) in SHR.  相似文献   

4.
Salt-sensitive hypertension is a characteristic of the metabolic syndrome. Given the links to cardiovascular events, the mechanisms underlying sodium metabolism may represent an important therapeutic target for this disorder. Angiotensin II (AII) is a key peptide underlying sodium retention. However, 5'AMP-activated protein kinase (AMPK) has also been reported to participate in the regulation of ion transport. In this study we examined the relationship between AII and AMPK on the development of hypertension in two salt-sensitive mouse models. In the first model, the mice were maintained on a high-fat diet (HFD) for 12 weeks, in order to develop features similar to the metabolic syndrome, including salt-sensitive hypertension. HFD-induced obese mice showed elevated systolic blood pressure and lower sodium excretion in response to salt loading, along with an increase in AII contents and inactivation of AMPK in the kidney, which were significantly improved by the treatment of an angiotensin II antagonist, losartan, for 2 weeks. To clarify the effects of AII, a second group of mice was infused with AII via an osmotic pump, which led to higher systolic blood pressure, and decreases in urinary sodium excretion and the expression of AMPK, in a manner similar to those observed in the HFD mice. However, treatment with an AMPK activator, metformin, improved the changes induced by the AII, suggesting that AII induced sodium retention works by acting on AMPK activity. Finally, we evaluated the changes in salt-sensitivity by performing 2-week salt loading experiments with or without metformin. AII infusion elevated blood pressure by salt loading but metformin prevented it. These findings indicate that AII suppresses AMPK activity in the kidney, leading to sodium retention and enhanced salt-sensitivity, and that AMPK activation may represent a new therapeutic target for obesity-related salt-sensitive hypertension.  相似文献   

5.
We have tested the hypotheses that systemic responses to the infusion of prostaglandin I2 may have masked the ability of this substance to dilate the maternal placenta and that the inability of prostaglandin I2 to dilate the maternal near-term placenta may be a function of placental age. Regional blood flows were measured with radioactive microspheres. In 8 near-term sheep the control flows were measured and angiotensin II (AII) infusion was begun at 5 micrograms/min and continued for the duration of the experiments. At t = 15 min, regional blood flows were again measured. Prostaglandin I2 was then infused via a retrograde uterine arterial catheter at 10 micrograms/min. At t = 30 min, the flows were again measured. At this time the infusion of prostaglandin I2 was stopped and at t = 45 min the blood flows were measured for the last time. AII increased the resistance of all tissues examined. The blood pressure increased with AII and did not change thereafter. The non-placental uterine tissue served by the retrograde catheter dilated with prostaglandin I2. The placental tissue had an initial resistance of 59 +/- 6 mmHg.ml-1.min.g which increased to 98 +/- 22 mmHg.ml-1.min.g with the infusion of AII (P less than 0.05). This resistance remained constant at 82 +/- 19 mmHg.ml-1.min.g with the administration of prostaglandin I2 and did not change after prostaglandin I2 was removed. The local application of prostaglandin I2 in the presence of AII induced vasoconstriction caused vasodilatation in the nonplacental vessels but could not change the AII induced constriction in the placental vasculature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In this study, we present a new approach for using the pressure vs. time data obtained after various vascular occlusion maneuvers in pump-perfused lungs to gain insight into the longitudinal distribution of vascular resistance with respect to vascular compliance. Occlusion data were obtained from isolated dog lung lobes under normal control conditions, during hypoxia, and during histamine or serotonin infusion. The data used in the analysis include the slope of the arterial pressure curve and the zero time intercept of the extrapolated venous pressure curve after venous occlusion, the equilibrium pressure after simultaneous occlusion of both the arterial inflow and venous outflow, and the area bounded by equilibrium pressure and the arterial pressure curve after arterial occlusion. We analyzed these data by use of a compartmental model in which the vascular bed is represented by three parallel compliances separated by two series resistances, and each of the three compliances and the two resistances can be identified. To interpret the model parameters, we view the large arteries and veins as mainly compliance vessels and the small arteries and veins as mainly resistance vessels. The capillary bed is viewed as having a high compliance, and any capillary resistance is included in the two series resistances. With this view in mind, the results are consistent with the major response to serotonin infusion being constriction of large and small arteries (a decrease in arterial compliance and an increase in arterial resistance), the major response to histamine infusion being constriction of small and large veins (an increase in venous resistance and a decrease in venous compliance), and the major response to hypoxia being constriction of the small arteries (an increase in arterial resistance). The results suggest that this approach may have utility for evaluation of the sites of action of pulmonary vasomotor stimuli.  相似文献   

7.
Six rabbits were sham operated and were given water to drink (sham-water group); six additional rabbits were sham operated and were given saline to drink (sham-salt group); another six rabbits received an implant of deoxycorticosterone (DOCA) and were given water to drink (DOCA-water group); a final group of six rabbits received implants of DOCA and were given saline to drink (DOCA-salt group). Two weeks later, all four groups of rabbits had approximately the same mean arterial pressures, and the sham-salt, DOCA-water, and DOCA-salt groups all had plasma renin activity values less than the sham-water group. The DOCA-salt group had greater pressor responses to norepinephrine (NE) at several doses than did the other three groups of rabbits. In another group of six sham-water and six DOCA-salt rabbits, measurements of cardiac output before and during infusions of NE at 800 ng/min/kg body wt revealed no changes in cardiac output before or during NE infusion, but the DOCA-salt group had significantly greater increases in mean arterial pressure and total peripheral resistance during NE than did the sham-water group. In another group of six DOCA-salt rabbits, the pressor response to several doses of NE were determined during infusion of the angiotensin II (AII) antagonist, [Sar1, Ile8] AII; this AII antagonist failed to alter the enhanced pressor responses to NE. A final experiment examined pressor responses to NE in six normal rabbits before and after cross circulation of blood with six DOCA-salt rabbits. After blood cross circulation the normal rabbits had exaggerated pressor responses to NE at 5, 15, and 30 min, but not at 60 min. Similar cross-circulation experiments between six pairs of normal rabbits did not show any transfer of pressor hyperresponsiveness. These studies indicated that pressor and vascular hyperresponsiveness in DOCA-salt rabbits is conveyed by a fast-acting hormonal factor and that AII probably is not involved in mediating this hyperresponsiveness.  相似文献   

8.
The non-cleared influences of the sympathetic nervous system [sN] on structural reactions of SHR and on the direct cardiac effects of AII and the structural vascular behavior were investigated. In 67 spontaneously hypertensive rats (Okamoto-Aoki) and 55 normotonic Wistar rats (NR) the blood pressure behaviour, the structural vascular and organ reactions and the noradrenaline (NA) content of the myocardium were examined with an intact sympathetic nervous system as well as after its almost complete elimination by chemical sympathectomy with 6-hydroxy-dopamine (6-OH-DA). Moreover, the functional and structural responsiveness of the arterial vessels of sympathectomized animals to angiotensin II administrations was investigated. 6-OH-DA in the dosage applied, induces during its time of action in NR a smaller, in SHR a larger decrease of blood pressure and, presumably induced by intense NA-depletion of the myocardium, myocardial alterations. Despite extensive AII-induced alterations of the already early hypertrophically-hyperplastically changed vascular wall, the structural and functional responsiveness of the arterial vascular system was maintained even after sympathectomy, and the sensitivity of the SHR to AII remained. For maintaining hypertension, the cooperation of structural and functional influences is necessary, as is indicated by the reduction of blood pressure in sympathectomized SHR and its regular return to the daily initial values of normotonic animals under additional AII administration. Besides the vascular alterations contributing to the exacerbation of the hypertension, here the sNS is of essential importance. For obtaining a total pressure effect of AII the sNS obviously has not necessarily to be intact, though its activity state can influence the responsiveness of the arterial vascular system to AII. The reduction of the sympathicotonus by sympathectomy seems to have a protective effect on the development of AII-induced structural vascular alterations; in contrast to the myocardium in SHR, in which it induces an exacerbation and an increase in the AII-induced myocardial alteration. These findings obtained from rats are supposed to be important also for the essential hypertension in man. By maintaining the functional responsiveness of the arterial vascular system, antihypertensives which react with the different parts of the sNS cab become effective while structural alterations of the vascular wall can be influenced, too. The possibility of the simultaneous development of myocardial alterations should be taken into special consideration.  相似文献   

9.
Vasopressin (AVP) and angiotensin II (AII) are proposed to exert part of their cardiovascular effects via different actions within the central nervous system. These peptides are also known to alter central noradrenergic function. In the present study we determined the effects of these peptides administered intravenously on norepinephrine (NE) turnover in discrete brain regions thought to be involved in the regulation of circulation, and simultaneously, in various peripheral tissues. An index of NE turnover was determined by measuring the decline in tissue NE concentration 75 min after administration of alpha-methyl tyrosine (240 mg . kg-1 . min-1, i.p.). During NE synthesis blockade, five separate groups of rabbits were infused intravenously (1 h) with either saline, AVP (4 and 16 mU . kg-1 . min-1), AII (0.1 microgram . kg-1 . min-1), or phenylephrine (PE) (5 micrograms . kg-1 . min-1). The low dose of AVP produced an increased index of NE turnover in the median preoptic area and the paraventricular nucleus, and concomitantly, a decreased index of NE turnover in kidney and skeletal muscle. In contrast, AII produced an increased index of NE turnover in the locus ceruleus and the intestine. Neither the infusion of vehicle nor the infusion of phenylephrine, which increased arterial pressure comparable to AVP and AII, produced detectable changes in indices of central and peripheral norepinephrine turnover. A higher dose of AVP produced a different pattern of changes in NE turnover than the low dose. These results demonstrate that intravenous infusion of the low dose of AVP produced changes in noradrenergic function in specific central areas known to be involved in autonomic outflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Blood pressure (BP) response to biofeedback-assisted relaxation is not uniform among hypertensive individuals. The purpose of this exploratory study was to determine if selected psychophysiological variables could be used to identify individuals able to lower blood pressure using biofeedback-assisted relaxation. Responders were defined using a preset criterion of 5 mm Hg or greater decrease in mean arterial pressure. A logistic regression model derived from five variables (heart rate, finger temperature, forehead muscle tension, plasma renin response to furosemide, and mean arterial pressure response to furosemide) provided significant predictive power for BP response, exhibiting a sensitivity of 84.6% and a specificity of 80.0%. With future validation, the proposed model may provide useful information to identify patients likely to benefit from biofeedback-assisted relaxation.  相似文献   

11.
Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.  相似文献   

12.
A carotid infusion of angiotensin (AII) (10 ng/kg/min) has been found to increase significantly higher mean arterial pressure (MAP) and produces significantly lower bradycardia than AII intravenous infusions at the same dose and rate. Besides, i.v. administration of AII elicits greater impairment on baroreflex sensitivity than carotid infusion of AII does. On the other hand, vasopressin vascular receptor blockade did not modify the baroreflex sensitivity either in the carotid or in the i.v. infusions of AII, and plasma AVP measurements did not change significantly in any group. It clearly indicates that neither AVP nor baroreflex impairment plays any role on the pressor action of AII intracarotid infusions at a low dose. The present results further suggest that baroreflex impairment in rats may unlikely be located in the region irrigated by the carotid artery.  相似文献   

13.
This study explores the functional association between renal sympathetic nerve traffic (NT) and arterial blood pressure (BP) in the very-low-frequency range (i.e., <0.1 Hz). NT and BP (n = 6) or BP alone (n = 17) was recorded in unanesthetized rats (n = 6). Data were collected for 2-5 h, and wavelet transforms were calculated from data epochs of up to 1 h. From these transforms, we obtained probability distributions for fluctuation amplitudes over a range of time scales. We also computed the cross-wavelet power spectrum between NT and BP to detect the occurrence in time of large-amplitude transient events that may be important in the autonomic regulation of BP. Finally, we computed a time sequence of cross correlations between NT and BP to follow the relationship between NT and BP in time. We found that NT and BP follow comparable self-similar scaling relationships (i.e., NT and BP fluctuations exhibit a certain type of power law behavior). Scaling of this nature 1) points to underlying dynamics over a wide range of scales and 2) is related to large-amplitude events that contribute to the very-low-frequency variability of NT and BP. There is a strong correlation between NT and BP during many of these transient events. These strong correlations and the uniformity in scaling imply a functional connection between these two signals at frequencies where we previously found no connection using spectral coherence.  相似文献   

14.
Initial studies were undertaken to investigate the effects of prolonged administration of angiotensin II (AII), 1 micrograms twice daily, via the lateral ventricles to mongrel dogs on arterial blood pressure and to determine if sodium intake was essential for the development of hypertension. Increasing AII levels in the cerebrospinal fluid for a prolonged period of time produced a sustained hypertensive state only in those dogs in which the daily intake of sodium was increased. The hypertension appeared to be due to an increase in total peripheral resistance. Central administration of AII increased both fluid intake and urine output. In order to assess the hemodynamic effects of increasing endogenous brain AII, renin was injected in doses of 0.025, 0.05, 0.1 and 0.3 units (from porcine kidney) into the lateral ventricles of chronically instrumented awake dogs. Hemodynamic variables were recorded prior to and one and 2 h after the central administration of renin. Renin produced a dose-dependent increase in mean arterial pressure with no significant change in heart rate or carotid, coronary and renal blood flow velocities. Chronic intraventricular administration of renin, 0.15 units twice daily to awake instrumented dogs receiving saline as the drinking fluid, markedly increased the daily intake of saline and increased diastolic and systolic blood pressure without increasing heart rate or carotid, coronary or renal blood flow velocities. There appears to be a direct significant relationship between the increase in mean blood pressure due to the intraventricular administration of renin and the volume of saline consumed.  相似文献   

15.
The blunting of arterial pressure increases to a variety of pressor agents or the lowering of arterial pressure in some models of hypertension following intracerebroventricular administration of an angiotensin II (AII) antagonist, has been interpreted as prima facie evidence for the involvement of the central AII system in these situations. Central administration of vasopressin or carbachol (a cholinergic agonist) produces pressor effects which have been reported to be due to an increase in the activity of the sympathetic nervous system. We now report that central administration of AII antagonists [either (Sar-1, Ile-8) AII or (Sar-1, Ala-8) AII] in rats prevents the majority (greater than 70%) of the pressor effects of intraventricular vasopressin or carbachol. These results can be interpreted in two ways. The first is that all of these pressor agents use a central angiotensinergic mechanism(s) to increase sympathetic nervous system activity. An alternative hypothesis is that centrally administered AII antagonists non-specifically inhibit sympathetic nervous system function.  相似文献   

16.
The effects of chronic ovine PRL (oPRL) infusion on resting systolic blood pressure (BP), heart rate, and pressor responsiveness to acute administration of norepinephrine and angiotensin were studied in adult male Sprague-Dawley rats. oPRL was administered over 7 days, via osmotic pump implanted ip on Day 1, at rates of 0, 0.15, 0.30, 0.60, 1.20, and 4.80 micrograms/hr. Resting BP and heart rate were indirectly determined in conscious rats by tail cuff technique on Days 1, 4, and 7 following pump implantation. In addition, acute pressor responses to ia norepinephrine (4.3 micrograms) and angiotensin (1.25 micrograms) were directly measured via arterial cannula in halothane-anesthetized rats on Day 7 of oPRL administration. oPRL infusion did not alter resting BP or heart rate over the 7 days. However, oPRL increased the BP response to norepinephrine at infusion rates of 0.60 and 4.80 micrograms/hr (P less than 0.01 vs controls). Body weight increases during the study were also greater in groups receiving 0.15, 0.30, 0.60, and 4.80 micrograms oPRL/hr (P less than 0.05) than those in control animals. oPRL decreased pressor responses to angiotensin at infusion rates of 0.30 and 1.20 micrograms/hr (P less than 0.01). These data suggest that, although the vascular effects of oPRL may not be evident under resting conditions, oPRL enhances vascular reactivity to norepinephrine infusion and depresses vascular reactivity to angiotensin infusion. Furthermore, at oPRL infusion rates which affect pressor responses to norepinephrine, oPRL increases body weight gain. These findings support a role for PRL in cardiovascular regulation during conditions of altered sympathetic activity.  相似文献   

17.
During orthostatic stress, arterial and cardiopulmonary baroreflexes play a key role in maintaining arterial pressure by regulating heart rate. This study presents a mathematical model that can predict the dynamics of heart rate regulation in response to postural change from sitting to standing. The model uses blood pressure measured in the finger as an input to model heart rate dynamics in response to changes in baroreceptor nerve firing rate, sympathetic and parasympathetic responses, vestibulo-sympathetic reflex, and concentrations of norepinephrine and acetylcholine. We formulate an inverse least squares problem for parameter estimation and successfully demonstrate that our mathematical model can accurately predict heart rate dynamics observed in data obtained from healthy young, healthy elderly, and hypertensive elderly subjects. One of our key findings indicates that, to successfully validate our model against clinical data, it is necessary to include the vestibulo-sympathetic reflex. Furthermore, our model reveals that the transfer between the nerve firing and blood pressure is nonlinear and follows a hysteresis curve. In healthy young people, the hysteresis loop is wide, whereas, in healthy and hypertensive elderly people, the hysteresis loop shifts to higher blood pressure values, and its area is diminished. Finally, for hypertensive elderly people, the hysteresis loop is generally not closed, indicating that, during postural change from sitting to standing, baroreflex modulation does not return to steady state during the first minute of standing.  相似文献   

18.

Introduction

The present study tested the hypothesis that long-term effects of baroreceptor activation might contribute to the prevention of persistent arterial blood pressure (BP) increase in the rat model of renovascular hypertension (HTN).

Methods

Repetitive arterial baroreflex (BR) testing was performed in normo- and hypertensive rats. The relationship between initial arterial BR sensitivity and severity of subsequently induced two-kidney one-clip (2K1C) renovascular HTN was studied in Wistar rats. Additionally, the time course of changes in systolic BP (SBP) and cardiac beat-to-beat (RR) interval was studied for 8 weeks after the induction of 2K1C renovascular HTN in the rats with and without sinoaortic denervation (SAD). In a separate experimental series, cervical sympathetic nerve activity (cSNA) was assessed in controls, 2K1C rats, WKY rats, and SHR.

Results

The inverse correlation between arterial BR sensitivity and BP was observed in the hypertensive rats during repetitive arterial BR testing. The animals with greater initial arterial BR sensitivity developed lower BP values after renal artery clipping than those with lower initial arterial BR sensitivity. BP elevation during the first 8 weeks of renal artery clipping in 2K1C rats was associated with decreased sensitivity of arterial BR. Although SAD itself resulted only in greater BP variability but not in persistent BP rise, the subsequent renal artery clipping invariably resulted in the development of sustained HTN. The time to onset of HTN was found to be shorter in the rats with SAD than in those with intact baroreceptors. cSNA was significantly greater in the 2K1C rats than in controls.

Conclusions

Arterial BR appears to be an important mechanism of long-term regulation of BP, and is believed to be involved in the prevention of BP rise in the rat model of renovascular HTN.  相似文献   

19.
The study determined the contribution of activity balance of the two motivational systems, i.e. appetitive and defensive, into mechanisms of blood pressure (BP) regulation in humans. Average age of participants was 30.29 +/- 9.8 years. Men having the BP within normal range and the individuals with firstly diagnosed increased arterial blood pressure up to abnormal values were selected. Using the method of emotional modulation of the startle reflex (EMSR) by different profiles of the EMSR. The participants with shifted balance toward enhanced activity of defensive system (amplified probe startle by unpleasant context) or shifted balance toward low activity of appetitive system (decrease or inhibition of the probe startle by pleasant context) had significantly increased BP in resting. Putative mechanisms of the revealed phenomena are discussed.  相似文献   

20.
Interstitial fluid balance is severely altered in microgravity, but the mechanisms underlying the fluid shift from lower to upper body are still partially unclear. A lumped parameter model of the arterial tree with active and non linear modulation of peripheral resistances and capillary fluid exchange was adopted to simulate the response of microcirculation to pulsatility and edema. Results suggest that myogenic regulation not only impinges on arteriolar radius, but it also indirectly affects interstitial fluid balance. Non linear dynamics of blood pressure (BP) and flow in capillary beds are influenced by systemic pulsatility, hinting that local activity is involved in the response to peripheral edema as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号