首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quantitative trait loci controlling plant architectural traits in cotton   总被引:5,自引:0,他引:5  
Cotton plant architecture is an important characteristic influencing the suitability of specific cotton varieties in cultivation, fiber yield and quality. However, complex multigenic relationships and substantial genotype–environment interaction underlie plant architecture, and will hinder the efficient improvement of these traits in conventional cotton breeding programs. An enhanced understanding of the molecular-genetic regulation of plant morphological developmental can aid in the modification of agronomically relevant traits. In this study, an interspecific Gossypium hirsutum and Gossypium barbadense BC1 population was used to identify QTL associated with plant architectural traits. Twenty-six single QTL were identified for seven plant architecture traits. The phenotypic variation explained by an individual QTL ranged from 9.56% to 44.57%. In addition, 11 epistatic QTL for fruit branch angle (FBA), plant height (PH), main-stem leaf size (MLS), and fruiting branch internode length (FBI) explained 2.28–15.34% of the phenotypic variation in these traits. The majority of the interactions (60%) occurred between markers linked to QTL influencing the same traits. The QTL detected in this study are expected to be valuable in future breeding programs to develop cultivars exhibiting desirable cotton architecture.  相似文献   

2.
Quantitative trait loci for male reproductive traits in beef cattle   总被引:2,自引:0,他引:2  
The objective of the present study was to detect quantitative trait loci (QTL) for male reproductive traits in a half-sib family from a Bos indicus (Brahman) x Bos taurus (Hereford) sire. The sire was mated with MARC III (1/4 Hereford, 1/4 Angus, 1/4 Red Poll and 1/4 Pinzgauer) cows. Testicular traits were measured from 126 male offspring born in 1996 and castrated at 8.5 months. Traits analysed were concentration of follicle stimulating hormone in peripheral blood at castration (FSH), paired testicular weight (PTW) and paired testicular volume (PTV) adjusted for age of dam, calculated age at puberty (AGE), and body weight at castration (BYW). A putative QTL was observed for FSH on chromosome 5. The maximum F-statistic was detected at 70 cM from the beginning of the linkage group. Animals inheriting the Hereford allele had a 2.47-ng/ml higher concentration of FSH than those inheriting the Brahman allele. Evidence also suggests the existence of a putative QTL on chromosome 29 for PTW, PTV, AGE and BYW. The maximum F-statistic was detected at cM 44 from the beginning of the linkage group for PTW, PTV and AGE, and at cM 52 for BYW. Animals that inherited the Brahman allele at this chromosomal region had a 45-g heavier PTW, a 42-cm(3) greater PTV, a 39-day younger AGE and a 22.8-kg heavier BYW, compared with those inheriting the Hereford allele. This is the first report of QTL for male reproductive traits in cattle.  相似文献   

3.
4.
Advances in plant breeding through marker-assisted selection (MAS) are only possible when genes or quantitative trait loci (QTLs) can contribute to the improvement of elite germplasm. A population of recombinant inbred lines (RILs) was developed for one of the best crosses of the Spanish National Barley Breeding Program, between two six-row winter barley cultivars Orria and Plaisant. The objective of this study was to identify favourable QTLs for agronomic traits in this population, which may help to optimise breeding strategies for these and other elite materials for the Mediterranean region. A genetic linkage map was developed for 217 RILs, using 382 single nucleotide polymorphism markers, selected from the barley oligonucleotide pool assay BOPA1 and two genes. A subset of 112 RILs was evaluated for several agronomic traits over a period of 2 years at three locations, Lleida and Zaragoza (Spain) and Fiorenzuola d’Arda (Italy), for a total of five field trials. An important segregation distortion occurred during population development in the region surrounding the VrnH1 locus. A QTL for grain yield and length of growth cycle was also found at this locus, apparently linked to a differential response of the VrnH1 alleles to temperature. A total of 33 QTLs was detected, most of them for important breeding targets such as plant height and thousand-grain weight. QTL × environment interactions were prevalent for most of the QTLs detected, although most interactions were of a quantitative nature. Therefore, QTLs suitable for MAS for most traits were identified.  相似文献   

5.
Osteochondrosis is a growth disorder in the cartilage of young animals and is characterised by lesions found in the cartilage and bone. This study identified quantitative trait loci (QTLs) associated with six osteochondrosis lesion traits in the elbow joint of finishing pigs. The traits were: thickening of the cartilage, lesion in the subchondral bone, irregular cartilage surface, fissure under the cartilage, an irregular sagittal central groove and depression of the proximal edge of the radius. The study comprised 7172 finishing pigs from crossing 12 Duroc boars with 600 crossbred Landrace × Large White sows and included 462 single nucleotide polymorphism markers. The results showed 18 QTLs exceeding the 5% genome-wide threshold. The QTLs associated with lesions in the medial part of the condylus humeri (assumed to be the four main osteochondrosis traits) were, in most cases, at common locations, whereas the QTLs associated with depression of the proximal edge of the radius in general were on the same chromosomes but at separate locations. The detected QTLs explain a large part of the genetic variation, which is promising for incorporating osteochondrosis into a breeding programme using marker-assisted selection.  相似文献   

6.
Genetic variation for intrinsic water use efficiency (W i) and related traits was estimated in a full-sib family of Quercus robur L. over 3 years. The genetic linkage map available for this F1 family was used to locate quantitative trait loci (QTL) for W i, as estimated by leaf carbon stable isotope composition (δ 13C) or the ratio of net CO2 assimilation rate (A) to stomatal conductance to water vapour (g w) and related leaf traits. Gas exchange measurements were used to standardize estimates of A and g w and to model the sensitivity of g w to leaf-to-air vapour pressure deficit (sgVPD). δ 13C varied by more than 3‰ among the siblings, which is equivalent to 40% variation of W i. Most of the studied traits exhibited high clonal mean repeatabilities (>50%; proportion of clonal mean variability in global variance). Repeatabilities for δ 13C, leaf mass per area (LMA) and leaf nitrogen content were higher than 70%. For δ 13C, ten QTLs were detected, one of which was detected repeatedly for all 3 years and consistently explained more than 20% of measured variance. Four genomic regions were found in which co-localizing traits linked variation in W i to variations in leaf chlorophyll and nitrogen content, LMA and sgVPD. A positive correlation using clonal means between δ 13C and A/g w, as well as a co-localisation of QTL detected for both traits, can be seen as validation of the theoretical model linking the genetic architecture of these two traits.  相似文献   

7.
Relatively little is known about the genetic control of agronomic traits in common wheat (Triticum aestivum L.) compared with traits that follow Mendelian segregation patterns. A doubled-haploid population was generated from the cross RL4452x'AC Domain' to study the inheritance of the agronomic traits: plant height, time to maturity, lodging, grain yield, test weight, and 1000-grain weight. This cross includes the genetics of 2 western Canadian wheat marketing classes. Composite interval mapping was conducted with a microsatellite linkage map, incorporating 369 loci, and phenotypic data from multiple Manitoba environments. The plant height quantitative trait loci (QTLs), QHt.crc-4B and QHt.crc-4D, mapped to the expected locations of Rht-B1 and Rht-D1. These QTLs were responsible for most of the variation in plant height and were associated with other agronomic traits. An additional 25 agronomic QTLs were detected in the RL4452x'AC Domain' population beyond those associated with QHt.crc-4B and QHt.crc-4D. 'AC Domain' contributed 4 alleles for early maturity, including a major time to maturity QTL on 7D. RL4452 contributed 2 major alleles for increased grain yield at QYld.crc-2B and QYld.crc-4A, which are potential targets for marker-assisted selection. A key test weight QTL was detected on 3B and prominent 1000-grain weight QTLs were identified on 3D and 4A.  相似文献   

8.
Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi‐parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi‐parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning.  相似文献   

9.
10.
In this study, the potential association of PrP genotypes with health and productive traits was investigated. Data were recorded on animals of the INRA 401 breed from the Bourges-La Sapinière INRA experimental farm. The population consisted of 30 rams and 852 ewes, which produced 1310 lambs. The animals were categorized into three PrP genotype classes: ARR homozygous, ARR heterozygous, and animals without any ARR allele. Two analyses differing in the approach considered were carried out. Firstly, the potential association of the PrP genotype with disease (Salmonella resistance) and production (wool and carcass) traits was studied. The data used included 1042, 1043 and 1013 genotyped animals for the Salmonella resistance, wool and carcass traits, respectively. The different traits were analyzed using an animal model, where the PrP genotype effect was included as a fixed effect. Association analyses do not indicate any evidence of an effect of PrP genotypes on traits studied in this breed. Secondly, a quantitative trait loci (QTL) detection approach using the PRNP gene as a marker was applied on ovine chromosome 13. Interval mapping was used. Evidence for one QTL affecting mean fiber diameter was found at 25 cM from the PRNP gene. However, a linkage between PRNP and this QTL does not imply unfavorable linkage disequilibrium for PRNP selection purposes.  相似文献   

11.
Quantitative trait loci for biofortification traits in maize grain   总被引:1,自引:0,他引:1  
Detecting genes that influence biofortification traits in cereal grain could help increase the concentrations of bioavailable mineral elements in crops to solve the global mineral malnutrition problem. The aims of this study were to detect the quantitative trait loci (QTLs) for phosphorus (P), iron (Fe), zinc (Zn), and magnesium (Mg) concentrations in maize grain in a mapping population, as well as QTLs for bioavailable Fe, Zn, and Mg, by precalculating their respective ratios with P. Elemental analysis of grain samples was done by coupled plasma-optical emission spectrometry in 294 F(4) lines of a biparental population taken from field trials of over 3 years. The population was mapped using sets of 121 polymorphic markers. QTL analysis revealed 32 significant QTLs detected for 7 traits, of which some were colocalized. The Additive-dominant model revealed highly significant additive effects, suggesting that biofortification traits in maize are generally controlled by numerous small-effect QTLs. Three QTLs for Fe/P, Zn/P, and Mg/P were colocalized on chromosome 3, coinciding with simple sequence repeats marker bnlg1456, which resides in close proximity to previously identified phytase genes (ZM phys1 and phys2). Thus, we recommend the ratios as bioavailability traits in biofortification research.  相似文献   

12.
Improvement of milk production traits in dairy sheep is required to increase the competitiveness of the industry and to maintain the production of high quality cheese in regions of Mediterranean countries with less favourable conditions. Additional improvement over classical selection could be reached if genes with significant effects on the relevant traits were specifically targeted by selection. However, so far, few studies have been undertaken to detect quantitative trait loci (QTL) in dairy sheep. In this study, we present a complete genome scan performed in a commercial population of Spanish Churra sheep to identify chromosomal regions associated with phenotypic variation observed in milk production traits. Eleven half-sib families, including a total of 1213 ewes, were analysed following a daughter design. Genome-wise multi-marker regression analysis revealed a genome-wise significant QTL for milk protein percentage on chromosome 3. Eight other regions, localized on chromosomes 1, 2, 20, 23 and 25, showed suggestive significant linkage associations with some of the analysed traits. To our knowledge, this study represents the first complete genome scan for milk production traits reported in dairy sheep. The experiment described here shows that analysis of commercial dairy sheep populations has the potential to increase our understanding of the genetic determinants of complex production-related traits.  相似文献   

13.
The objectives of this study were to understand the genetic basis of morphological variation observed in the genus Citrus and its relatives and to identify genomic regions associated with certain morphological traits using genetic linkage mapping and quantitative trait loci (QTLs) analysis with random amplified polymorphic DNA (RAPD) markers. First, a genetic linkage map was constructed with RAPD markers obtained by screening 98 progeny plants from a {Citrus grandis × [C. paradisi × Poncirus trifoliata]} × {[(C. paradisi × P. trifoliata) × C. reticulata] × [(C. paradisi × Poncirus trifoliata) × C. sinensis]} intergeneric cross. The map contains 69 RAPD markers distributed into nine linkage groups. Then, 17 different morphological traits, including six tree and two leaf characters of 98 progeny plants and six floral and three fruit characters of about half of the same progeny plants were evaluated for 2 years and statistically analyzed for variation. Statistical analysis of individual traits indicated that trunk diameter and growth, tree height, canopy width, tree vigor and growth, leaf length and width, petal and anther numbers, petal length and width, length of pistil and style, fruit length and diameter, and fruit segment number showed normal or close to normal distribution, suggesting that these traits may be inherited quantitatively. Quantitative data from the morphological traits were analyzed to detect markers and putative QTLs associated with these traits using interval mapping method. QTL analysis revealed 18 putative QTLs of LOD > 3.0 associated with 13 of the morphological traits analyzed. The putative QTLs were distributed in several different linkage groups, and QTLs associated with similar traits were mostly mapped to the same LG or similar locations in the linkage group, indicating that the same genomic region is involved in the inheritance of some of the morphological traits.  相似文献   

14.
Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring temperatures. A three-generation mapping population of 460 cloned progeny was used for genetic mapping and phenotypic evaluations. An all-marker interval mapping method was used for scanning the genome for the presence of QTL and single-factor ANOVA was used for estimating QTL-by-environment interactions. A modest number of QTL were detected per trait, with individual QTL explaining up to 9.5% of the phenotypic variation. Two QTL-by-treatment interactions were found for growth initiation, whereas several QTL-by-treatment interactions were detected among growth cessation traits. This is the first report of QTL interactions with specific environmental signals in forest trees and will assist in the identification of candidate genes controlling these important adaptive traits in perennial plants.  相似文献   

15.
To understand the genetic characteristics of the traits related to differentiation between cultivated rice and its wild progenitor, genetic factors controlling domestication- and yield-related traits were identified using a BC3F2 population derived from an accession of common wild rice (donor, Oryza rufipogon Griff.) collected from Yuanjiang, Yunnan province, China, and an indica cultivar, Teqing (recipient, Oryza sativa L.). A genetic linkage map consisting of 125 simple sequence repeat (SSR) markers was constructed. Based on the phenotypes of the 383 BC3F2 families evaluated in two environments, two domestication-related morphological traits, panicle shape and growth habit, were found to be controlled by single Mendelian factors. This implies that the recessive mutations of single genes controlling some morphological traits could have been easily selected during early domestication. By single-point analysis and interval mapping, 59 putative quantitative trait loci (QTLs) that influence 11 quantitative traits were detected at two sites, and 37.5% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield-related traits in the Teqing background. Regions with significant QTLs for domestication- and yield-related traits were detected on chromosomes 1, 4, 5, 7, 8, and 12. Fine mapping and cloning of these domestication-related genes and QTLs will be useful in elucidating the origin and differentiation of Asian cultivated rice in the future.  相似文献   

16.
A whole genome scan was carried out to detect quantitative trait loci (QTL) for fertility traits in Finnish Ayrshire cattle. The mapping population consisted of 12 bulls and 493 sons. Estimated breeding values for days open, fertility treatments, maternal calf mortality and paternal non-return rate were used as phenotypic data. In a granddaughter design, 171 markers were typed on all 29 bovine autosomes. Associations between markers and traits were analysed by multiple marker regression. Multi-trait analyses were carried out with a variance component based approach for the chromosomes and trait combinations, which were observed significant in the regression method. Twenty-two chromosome-wise significant QTL were detected. Several of the detected QTL areas were overlapping with milk production QTL previously identified in the same population. Multi-trait QTL analyses were carried out to test if these effects were due to a pleiotropic QTL affecting fertility and milk yield traits or to linked QTL causing the effects. This distinction could only be made with confidence on BTA1 where a QTL affecting milk yield is linked to a pleiotropic QTL affecting days open and fertility treatments.  相似文献   

17.
The genetic basis of species differences provides insight into the mode and tempo of phenotypic divergence. We investigate the genetic basis of floral differences between two closely related plant taxa with highly divergent mating systems, Mimulus guttatus (large-flowered outcrosser) and M. nasutus (small-flowered selfer). We had previously constructed a framework genetic linkage map of the hybrid genome containing 174 markers spanning approximately 1800 cM on 14 linkage groups. In this study, we analyze the genetics of 16 floral, reproductive, and vegetative characters measured in a large segregating M. nasutus x M. guttatus F2 population (N = 526) and in replicates of the parental lines and F1 hybrids. Phenotypic analyses reveal strong genetic correlations among floral traits and epistatic breakdown of male and female fertility traits in the F2 hybrids. We use multitrait composite interval mapping to jointly locate and characterize quantitative trait loci (QTLs) underlying interspecific differences in seven floral traits. We identified 24 floral QTLs, most of which affected multiple traits. The large number of QTLs affecting each trait (mean = 13, range = 11-15) indicates a strikingly polygenic basis for floral divergence in this system. In general, QTL effects are small relative to both interspecific differences and environmental variation within genotypes, ruling out QTLs of major effect as contributors to floral divergence between M. guttatus and M. nasutus. QTLs show no pattern of directional dominance. Floral characters associated with pollinator attraction (corolla width) and self-pollen deposition (stigma-anther distance) share several pleiotropic or linked QTLs, but unshared QTLs may have allowed selfing to evolve independently from flower size. We discuss the polygenic nature of divergence between M. nasutus and M. guttatus in light of theoretical work on the evolution of selfing, genetics of adaptation, and maintenance of variation within populations.  相似文献   

18.
The genomic locations and identities of the genes that regulate voluntary physical activity are presently unknown. The purpose of this study was to search for quantitative trait loci (QTL) that are linked with daily mouse running wheel distance, duration, and speed of exercise. F(2) animals (n = 310) derived from high active C57L/J and low active C3H/HeJ inbred strains were phenotyped for 21 days. After phenotyping, genotyping with a fully informative single-nucleotide polymorphism panel with an average intermarker interval of 13.7 cM was used. On all three activity indexes, sex and strain were significant factors, with the F(2) animals similar to the high active C57L/J mice in both daily exercise distance and duration of exercise. In the F(2) cohort, female mice ran significantly farther, longer, and faster than male mice. QTL analysis revealed no sex-specific QTL but at the 5% experimentwise significance level did identify one QTL for duration, one QTL for distance, and two QTL for speed. The QTL for duration (DUR13.1) and distance (DIST13.1) colocalized with the QTL for speed (SPD13.1). Each of these QTL accounted for approximately 6% of the phenotypic variance, whereas SPD9.1 (chromosome 9, 7 cM) accounted for 11.3% of the phenotypic variation. DUR13.1, DIST13.1, SPD13.1, and SPD9.1 were subsequently replicated by haplotype association mapping. The results of this study suggest a genetic basis of voluntary activity in mice and provide a foundation for future candidate gene studies.  相似文献   

19.
Quantitative trait loci for red blood cell traits in swine   总被引:4,自引:1,他引:3  
Haematological traits are essential diagnostic parameters in veterinary practice but knowledge on the genetic architecture controlling variability of erythroid traits is sparse, especially in swine. To identify QTL for erythroid traits in the pig, haematocrit (HCT), haemoglobin (HB), erythrocyte counts (RBC) and mean corpuscular haemoglobin content (MCHC) were measured in 139 F2 pigs from a Meishan/Pietrain family, before and after challenge with the protozoan pathogen Sarcocystis miescheriana . The pigs passed through three stages representing acute disease, reconvalescence and chronic disease. Forty-three single QTL controlling erythroid traits were identified on 16 chromosomes. Twelve of the QTL were significant at the genome-wide level while 31 were significant at a chromosome-wide level. Because erythroid traits varied with health and disease status, QTL influencing the erythroid phenotypes showed specific health/disease patterns. Regions on SSC5, 7, 8, 12 and 13 contained QTL for baseline erythroid traits, while the other QTL regions affected distinct stages of the disease model. Single QTL explained 9–17% of the phenotypic variance in the F2 animals. Related traits were partly under common genetic influence. Our analysis confirms that erythroid trait variation differs between Meishan and Pietrain breeds and that this variation is associated with multiple chromosomal regions.  相似文献   

20.
Fruit quality is a major focus for most conventional and innovative tomato breeding strategies, with particular attention being paid to fruit antioxidant compounds. Tomatoes represent a major contribution to dietary nutrition worldwide and a reservoir of diverse antioxidant molecules. In a previous study, we identified two Solanum pennellii introgression lines (IL7-3 and IL12-4) harbouring quantitative trait loci (QTL) that increase the content of ascorbic acid (AsA), phenols and soluble solids (degrees Brix; °Bx) in tomato fruit. The purpose of the present work was to pyramid into cultivated varieties the selected QTL for enhanced antioxidant and °Bx content. To better understand the genetic architecture of each QTL, the two ILs were crossed to the recurrent parent M82 (ILH7-3 and ILH12-4) and between them (ILH7-3+12-4). F1 hybrids (ILH7-3+12-4) were then selfed up to obtain F3 progenies in order to stabilize the favourable traits at the homozygous condition. Species-specific molecular markers were identified for each introgressed region and allowed us to select four F2 genotypes carrying both introgressions at the homozygous condition. The F3 double homozygous plants displayed AsA, total phenols and °Bx content significantly higher than M82. Therefore, they may represent suitable genetic material for breeding schemes aiming to increase antioxidant content in tomato fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号