首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The P3(00) event-related potentials (ERPs) elicited by visual stimuli in two visual tasks were assessed in depressed patients (12 patients with major depression and 11 patients with bipolar disorder) and compared with those of 20 age-matched normal controls. At remission, the ERPs from 18 of the depressed patients were again recorded. The visual oddball (VO) paradigm presented both target and standard visual stimuli and the simple visual (SV) paradigm presented a target but no standard visual stimulus. Subjects performed the VO task significantly less accurately than the SV task, as reflected by the behavioral measures (reaction-time and task accuracy). Depressed patients of the bipolar group showed longer P3 peak latency for the VO task and no change in P3 amplitude. No significant differences were found in any other ERP component between the groups. During remission, slowing RTs and reduced P3 peak latencies were observed for both major depression and bipolar disorder groups. Thus, the P3 ERP may be an index of the contribution of the slowed central processing to psychomotor retardation in clinically homogenous samples of depressive patients performing an appropriately demanding task.  相似文献   

2.
The P300 component of the event-related brain potential (ERP) was elicited with auditory and visual stimuli in separate experiments. Each study compared an oddball paradigm that presented both target and standard stimuli with a single-stimulus paradigm that presented a target but no standard stimuli. Subjects were instructed in different conditions either to ignore the stimuli, press a response key to the target, or maintain a mental count of the targets. For the passive ignore conditions, P300 amplitude from the single-stimulus paradigm was larger than that from the oddball paradigm. For the active tasks, P300 amplitude from the oddball paradigm was larger than that from the single-stimulus paradigm. For the press and count conditions, P300 amplitude and latency were highly similar for the oddball and single-stimulus procedures. The findings suggest that the single-stimulus paradigm can provide reliable cognitive measures in clinical/applied testing for both passive and active response conditions.  相似文献   

3.
Event-related potentials (ERPs) to visual and somatosensory stimuli, generated during an oddball task, were obtained in a group of autistic children and 3 control groups (normal, attention-deficit, and dyslectic children, respectively). The task included the presentation of standard, deviant, and novel stimuli and had a (between-group) passive vs. active (counting) condition. Research questions were whether (a) autistic children differ from other children with respect to the processing of visual and/or somatosensory stimuli, as measured in the amplitude of the N1, mismatch activity, and P3, (b) autistic children specifically have problems in the processing in distal (visual) stimuli, compared to the processing of proximal (somatosensory) stimuli, and (c) autistic children have an atypical lateralization pattern of ERP activity. Only in the autistic group a task effect on the visual P2N2 (mismatch activity) and larger P3s to novels than to deviants were found, in both the visual and the somatosensory modality. There also was a smaller occipital P3 to visual standard stimuli in the passive condition in the autistic group than in 2 control groups. We concluded that autistics (a) differ from several other groups of children with respect to the visual P2N2 and the visual and somatosensory P3, (b) show abnormalities in the processing of both proximal and distal stimuli, and (c) show no indication of abnormal lateralization of ERPs.  相似文献   

4.
Event-related potentials (ERPs) were elicited with an auditory discrimination paradigm in 20 adult female subjects on the first day of their menstrual cycles and approximately 14 days later. The amplitude and latency of the N1, P2, N2 and P3 (P300) components were measured for the two assessment times. No differences in either amplitude or latency for any of the components were observed as a function of menstrual cycle. Half the subjects who took oral contraceptives were compared to the other half who did not. No differences or interactions between these subgroups were obtained for any component amplitude or latency. It was concluded that menstrual cycle and use of oral contraceptives do not affect the P3 or other ERP components.  相似文献   

5.
The present study tested whether neural sensitivity to salient emotional facial expressions was influenced by emotional expectations induced by a cue that validly predicted the expression of a subsequently presented target face. Event-related potentials (ERPs) elicited by fearful and neutral faces were recorded while participants performed a gender discrimination task under cued (‘expected’) and uncued (‘unexpected’) conditions. The behavioral results revealed that accuracy was lower for fearful compared with neutral faces in the unexpected condition, while accuracy was similar for fearful and neutral faces in the expected condition. ERP data revealed increased amplitudes in the P2 component and 200–250 ms interval for unexpected fearful versus neutral faces. By contrast, ERP responses were similar for fearful and neutral faces in the expected condition. These findings indicate that human neural sensitivity to fearful faces is modulated by emotional expectations. Although the neural system is sensitive to unpredictable emotionally salient stimuli, sensitivity to salient stimuli is reduced when these stimuli are predictable.  相似文献   

6.
P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task presented here is not applicable to incommunicative patients.  相似文献   

7.
The P3(00) event-related brain potential (ERP) was elicited with auditory stimuli to compare 2 different discrimination tasks. The oddball paradigm presented both target and standard tones; the single-stimulus paradigm presented at target but no standard tone stimulus. Experiment 1 manipulated target stimulus probability (0.20, 0.50, 0.80) and produced highly similar P3 amplitude and latency results across probability levels for each paradigm. Experiment 2 factorially varied inter-stimulus interval (2 sec, 6 sec) and target stimulus probability (0.20, 0.80). P3 amplitude and latency were highly similar for both the oddball and single-stimulus procedures across all conditions.  相似文献   

8.
The event-related potentials (ERPs) in visual discrimination task in parietal and temporal cortical areas were recorded in 11 young adults during passive observation (involuntary attention) and target selection (voluntary attention). The voluntary selective attention resulted in: 1) increased ERP correlation between the parietal; and temporal cortical areas; 2) increased correlation of sequential ERPs in monopolar leads (P3, P4, T3, T4, T5, T6); and 3) increased correlation of sequential ERPs in bipolar leads (P3-T3, P3-T5, P4-T4, P4-T6). The findings suggest that voluntary attention maintains a concordant activity of the parietal and temporal cortical areas in execution of visual selection tasks.  相似文献   

9.
The P300 (P3) event-related brain potential (ERP) was elicited in 16 demented patients presumed to be in the early stages of Alzheimer's disease and 16 normal control subjects well matched for age, sex, education and occupational level. All subjects performed a simple auditory discrimination task in which a target tone was presented randomly on 20% of the trials. P3 amplitude was smaller and peak latency longer for the Alzheimer patients compared to control subjects. A second ERP task also was administered in which the target tone occurred 50% of the time. Analysis of the target/standard tone presentation sequences indicated that the Alzheimer patient group demonstrated less amplitude difference between the target and standard sequences and longer overall latencies compared to the control group. The results that the P3 ERP component from auditory stimuli can provide useful information about Alzheimer's disease during its early stages.  相似文献   

10.
The effect of stimulus duration on the mismatch negativity in the auditory event-related potentials was used to study the role of mismatch negativity (MMN) in discrimination of short acoustical stimuli. We compared discrimination of different short acoustical stimuli in active variant of "odd ball" paradigm. It was shown that it is possible to discriminate between standard and deviant acoustical stimuli which do not produce MMN in passive condition. It makes possible to estimate behavioural significance of MMN in active discrimination task. If the MMN had not been recorded in passive condition, that leads to an increase of reaction time in active paradigm approximately by 50 ms.  相似文献   

11.
Mismatch negativity of ERP in cross-modal attention   总被引:1,自引:0,他引:1  
Event-related potentials were measured in 12 healthy youth subjects aged 19-22 using the paradigm "cross-modal and delayed response" which is able to improve unattended purity and to avoid the effect of task target on the deviant components of ERP. The experiment included two conditions: (i) Attend visual modality, ignore auditory modality; (ii) attend auditory modality, ignore visual modality. The stimuli under the two conditions were the same. The difference wave was obtained by subtracting ERPs of the standard stimuli from that of the deviant stim-uli. The present results showed that mismatch negativity (MMN), N2b and P3 components can be produced in the auditory and visual modalities under attention condition. However, only MMN was observed in the two modalities un-der inattention condition. Auditory and visual MMN have some features in common: their largest MMN wave peaks were distributed respectively over their primary sensory projection areas of the scalp under attention condition, but over front  相似文献   

12.
Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500–700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions.  相似文献   

13.
The relation of the hippocampal neuronal activity to the rat event-related potential (ERP) generation was examined during an auditory discrimination oddball paradigm. ERPs were recorded using a linearly-arranged series of electrodes chronically implanted at the skull, in the frontoparietal cortex, in the CA1 and CA3 regions of the dorsal hippocampus and in the thalamus. The target tone elicited N40, P100, N200, and P450 at the skull electrode. The non-target tone, on the other hand, prominently evoked only the P100 component. At the intracranial electrodes, the ERP amplitude at the latency of the skull P450 was significantly greater in the CA3 region than that at other recording sites, although a phase reversal was not observed. The results indicate that the P450 of the rat may correspond to the human P3, and that the neuronal activity in the hippocampus is involved in its generation.  相似文献   

14.
The topography of auditory event-related potentials (ERPs) was examined during 3 kinds of tasks: selection of a specified real word or nonsense syllable from a list; simple detection of each of the same stimuli without discrimination; and classification of a set of words according to a specified semantic category. The potentials that were associated with the additional processing required by the discriminative tasks were disclosed by subtracting the wave forms obtained in the detection condition from those obtained during discriminative performance. Difference wave forms were also derived between the semantic classification and verbal discriminative ERP to delineate the changes associated with the extraction of word meaning.The topography of the ERP associated with stimulus detection was comparable to that found in previous studies of evoked potentials to non-speech stimuli. This distribution was consistent with 2 cortical generators, one within the supratemporal plane and the other on the lateral surface of the superior temporal gyrus. When discriminative performance was required on the basis of acoustic stimulus properties, the topography of the difference wave form that reflected this discriminative processing extended more posteriorly over temporal cortex. Semantic processing elicited a further posterior extension of ERP components by 330 msec after stimulus onset, as well as longer latency potentials that were not present in the verbal selection task. These differences imply that a more extensive portion of language cortex is engaged in semantic classification than in verbal identification.  相似文献   

15.
Research on the effects of self-regulation of slow potentials (SP) and event-related potentials (ERP) has failed to look at the possible interactions of these two kinds of brain potentials. The present study investigated such interactions by recording both ERP and SP potential changes in an operant ERP conditioning paradigm. Ten subjects participated in two conditions that were designed to differentially manipulate attention to the stimuli. In the operant conditioning task, subjects received auditory feedback as they attempted to increase the ERP amplitude at 180 msec poststimulus (P180), which was elicited by a subpainful shock stimulus to the forearm over 250 trials. In the distraction task, subjects were instructed not to attend to stimuli or feedback tones, but rather received and were tested on reading materials. Attention, as manipulated by these tasks, was not a determinant of changes in ERP amplitude since there were no significant differences in the size of P180 between attention conditions. While no significant change in the mean ERP amplitude occurred, subjects were able to produce ERPs above criterion threshold significantly more often during trials in the conditioning task than in the reading task. Thus, there was evidence of some learning. The difference in wave forms between hit and miss trials indicates a latency shift (with misses having a later ERP peak). This may indicate that latency, rather than, or in addition to, amplitude, is shaped during conditioning procedures. In addition, the CNV that developed between the shock stimulus and the feedback signal during conditioning was significantly larger in amplitude than in the distraction condition. This is taken as evidence of increased attention during conditioning. Since hit trials demonstrated larger contingent negative variation (CNV) amplitudes, production of CNVs may be instrumental in mediating hits. Therefore, attentional mechanisms may play a role in successful ERP self-regulation. No correlations were found involving P180, CNVs, or tonic slow potential shifts. Changes in tonic DC levels showed a suggestive trend between conditions. Although both conditions began with a negative shift, during conditioning the negativity increased, while during distraction the tonic level went to positivity. These trends support the hypothesis that attention and arousal increased during conditioning. The possible reasons for the lack of significant correlations between ERP and tonic or phasic slow potential changes in this paradigm are discussed.  相似文献   

16.
Two experiments were conducted to investigate the automatic processing of emotional facial expressions while performing low or high demand cognitive tasks under unattended conditions. In Experiment 1, 35 subjects performed low (judging the structure of Chinese words) and high (judging the tone of Chinese words) cognitive load tasks while exposed to unattended pictures of fearful, neutral, or happy faces. The results revealed that the reaction time was slower and the performance accuracy was higher while performing the low cognitive load task than while performing the high cognitive load task. Exposure to fearful faces resulted in significantly longer reaction times and lower accuracy than exposure to neutral faces on the low cognitive load task. In Experiment 2, 26 subjects performed the same word judgment tasks and their brain event-related potentials (ERPs) were measured for a period of 800 ms after the onset of the task stimulus. The amplitudes of the early component of ERP around 176 ms (P2) elicited by unattended fearful faces over frontal-central-parietal recording sites was significantly larger than those elicited by unattended neutral faces while performing the word structure judgment task. Together, the findings of the two experiments indicated that unattended fearful faces captured significantly more attention resources than unattended neutral faces on a low cognitive load task, but not on a high cognitive load task. It was concluded that fearful faces could automatically capture attention if residues of attention resources were available under the unattended condition.  相似文献   

17.
L Li  M Wang  QJ Zhao  N Fogelson 《PloS one》2012,7(7):e42233

Background

When switching from one task to a new one, reaction times are prolonged. This phenomenon is called switch cost (SC). Researchers have recently used several kinds of task-switching paradigms to uncover neural mechanisms underlying the SC. Task-set reconfiguration and passive dissipation of a previously relevant task-set have been reported to contribute to the cost of task switching.

Methodology/Principal Findings

An unpredictable cued task-switching paradigm was used, during which subjects were instructed to switch between a color and an orientation discrimination task. Electroencephalography (EEG) and behavioral measures were recorded in 14 subjects. Response-stimulus interval (RSI) and cue-stimulus interval (CSI) were manipulated with short and long intervals, respectively. Switch trials delayed reaction times (RTs) and increased error rates compared with repeat trials. The SC of RTs was smaller in the long CSI condition. For cue-locked waveforms, switch trials generated a larger parietal positive event-related potential (ERP), and a larger slow parietal positivity compared with repeat trials in the short and long CSI condition. Neural SC of cue-related ERP positivity was smaller in the long RSI condition. For stimulus-locked waveforms, a larger switch-related central negative ERP component was observed, and the neural SC of the ERP negativity was smaller in the long CSI. Results of standardized low resolution electromagnetic tomography (sLORETA) for both ERP positivity and negativity showed that switch trials evoked larger activation than repeat trials in dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC).

Conclusions/Significance

The results provide evidence that both RSI and CSI modulate the neural activities in the process of task-switching, but that these have a differential role during task-set reconfiguration and passive dissipation of a previously relevant task-set.  相似文献   

18.
Research on the effects of self-regulation of slow potentials (SP) and event-related potentials (ERP) has failed to look at the possible interactions of these two kinds of brain potentials. The present study investigated such interactions by recording both ERP and SP potential changes in an operant ERP conditioning paradigm. Ten subjects participated in two conditions that were designed to differentially manipulate attention to the stimuli. In the operant conditioning task, subjects received auditory feedback as they attempted to increase the ERP amplitude at 180 msec poststimulus (P180), which was elicited by a subpainful shock stimulus to the forearm over 250 trials. In the distraction task, subjects were instructed not to attend to stimuli or feedback tones, but rather received and were tested on reading materials. Attention, as manipulated by these tasks, was not a determinant of changes in ERP amplitude since there were no significant differences in the size of P180 between attention conditions. While no significant change in the mean ERP amplitude occurred, subjects were able to produce ERPs above criterion threshold significantly more often during trials in the conditioning task than in the reading task. Thus, there was evidence of some learning. The difference in wave forms between hit and miss trials indicates a latency shift (with misses having a later ERP peak). This may indicate that latency, rather than, or in addition to, amplitude, is shaped during conditioning procedures. In addition, the CNV that developed between the shock stimulus and the feedback signal during conditioning was significantly larger in amplitude than in the distraction condition. This is taken as evidence of increased attention during conditioning. Since hit trials demonstrated larger contingent negative variation (CNV) amplitudes, production of CNVs may be instrumental in mediating hits. Therefore, attentional mechanisms may play a role in successful ERP self-regulation. No correlations were found involving P180, CNVs, or tonic slow potential shifts. Changes in tonic DC levels showed a suggestive trend between conditions. Although both conditions began with a negative shift, during conditioning the negativity increased, while during distraction the tonic level went to positivity. These trends support the hypothesis that attention and arousal increased during conditioning. The possible reasons for the lack of significant correlations between ERP and tonic or phasic slow potential changes in this paradigm are discussedThis research was partially supported by NICHD Grant HD 15327 to R. Karrer, NIH Grant DE05204 to J. P. Rosenfeld, and the Office of Social Science Research at University of Illinois at Chicago. Appreciation is extended to G. Dombrowski for his assistance in data analysis.  相似文献   

19.
图形形状和空间位置知觉的ERP研究   总被引:2,自引:0,他引:2  
研究图形表状和空间位置知觉任务与单纯图形形状知觉任务所诱发的ERP反应,探讨同时注意物体的两种不同特征是与仅注意其中一种特征时的ERP特性与差别。实验结果为:(1)行为数据显示,两种任务的正确率没有显著差别,但形状和空间位置知觉任务的反应时显著低于单纯形状知觉任务;(2)ERP数据显示,两种任务表现出非常相近的ERP波形特征;在大脑后部区域微弱的P1成分,非常显著的N1成分,显著的P2,N2,P3成分;在大脑前部额区显著的P2成分,并且,与单纯形状知觉任务相比,图形形状和空间位置知觉任务表现枕颞区N2波幅的显著减弱,P3潜伏期的显著缩短,额区的P2波幅的显微减弱;(3)脑电表图与分辨率断层成象(LORETA)显示,两种任务的特征波N1成分均来源于双侧的枕颞皮层,表明两种任务均涉及到与物体形状识别相关的视皮层腹侧通路,而差别波dN2成分来源于在侧枕颞区,暗示特征加工的差异主要发生在左侧枕颞区。  相似文献   

20.
Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes, whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered components.With an evenly distributed set of trials and a split-half reliability for all ERP components ≥.85 the task is well suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in clinical populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号