首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of nutrients (glucose, glutamine, and N-acetylglucosamine), the intracellular concentrations of metabolites (glucose-6-phosphate, cyclic AMP, amino acids, trehalose, and glycogen) and cell wall composition were studied in Candida albicans. These analyses were carried out with exponential-phase, stationary-phase, and starved yeast cells, and during germ-tube formation. Germ tubes formed during a 3-h incubation of starved yeast cells (0.8 X 10(8) cells/mL) at 37 degrees C during which time the nutrients glucose plus glutamine or N-acetylglucosamine (2.5 mM of each) were completely utilized. Control incubations with these nutrients at 28 degrees C did not form germ tubes. Uptake of N-acetylglucosamine and glutamine was inhibited by cycloheximide which suggests that de novo protein synthesis was required for the induction of these uptake systems. The glucose-6-phosphate content varied from 0.4 nmol/mg dry weight for starved cells to 2-3 nmol/mg dry weight for growing yeast cells and germ tube forming cells. Trehalose content varied from 85 nmol/mg dry weight (growing yeast cells and germ tube forming cells) to 165 nmol/mg weight (stationary-phase cells). The glycogen content decreased during germ-tube formation (from 800 to 600 nmol glucose equivalent/mg dry weight) but increased (to 1000 nmol glucose equivalent/mg dry weight) in the control incubation of yeast cells. Cyclic AMP remained constant throughout germ-tube formation at 4-6 pmol/mg dry weight. The total amino acid pool was similar in exponential, starved, and germ tube forming cells but there were changes in the amounts of individual amino acids. The overall cell wall composition of yeast cells and germ tube forming cells were similar: lipid (2%, w/w); protein (3-6%), and carbohydrate (77-85%). The total carbohydrates were accounted for as the following fractions: alkali-soluble glucan (3-8%), mannan (20-23%), acid-soluble glucan (24-27%), and acid-insoluble glucan (18-26%). The relative amounts of the alkali-soluble and insoluble glucan changed during starvation of yeast cells, reinitiation of yeast-phase growth, and germ-tube formation. Analysis of the insoluble glucan fraction from cells labelled with [14C]glucose during germ-tube formation showed that the chitin content of the cell wall increased from 0.6% to 2.7% (w/w).  相似文献   

2.
Uptake and efflux of 6-deoxy-d-[3H]glucose and of 2-deoxy-d-[14C]glucose by the yeast Kluyveromyces lactis was studied. The tritiated, nonphosphorylatable hexose analogue leaves the cell in the absence and presence of intracellular 2-deoxy-d-glucose 6-phosphate. In energy-rich cells containing pools of hexose 6-phosphate, 2-deoxy-d-glucose is trapped in the cells, for it neither effluxes into glucose-free medium nor exchanges with external, free sugar. In starved, poisoned cells containing negligible amounts of 2-deoxy-d-glucose 6-phosphate, 2-deoxy-d-glucose does leave the cells upon transfer to glucose-free medium. An involvement of analogue structure and availability of metabolites of energy-rich cells in hexose retention is suggested. An internal pool of 6-deoxy-d-glucose does not affect the rate of uptake of 6-deoxy-d-[3H]glucose, nor does internal 2-deoxy-d-[14C]glucose 6-phosphate influence that rate. Hence, transport of glucose by this yeast is probably not regulated by internal pools of glucose 6-phosphate.  相似文献   

3.
The turnover of cerebrospinal fluid (CSF) glucose was studied in cats during steady-state perfusion. In all experiments, the perfusion fluid contained either tracer [14C]glucose alone or tracer glucose along with 4.45 mM unlabeled glucose. In some studies, serum glucose was lowered with insulin. The concentration of glucose and [14C]glucose in the effluent fluid was measured, and the distribution of 14C between glucose and lactate was determined by chromatography. From these values, the extraction of glucose and the metabolism of glucose to lactate were calculated. From the decrease in the specific activity of glucose in the perfusion fluid, the influx of glucose from serum was also determined. During steadystate perfusion, 71% of the radioactivity was recovered in the effluent fluid: 50% in the form of glucose, 6% in the form of lactate, and 15% in forms that were not identified. Thus, 50% of the perfusion fluid glucose was cleared, of which 29% was extracted and 21% metabolized. The influx of glucose was proportional to the serum glucose when the latter was about 2.5 mM or 10.0 mM. During perfusion with tracer glucose only, the concentration of glucose in the effluent fluid was 25% that of serum. The transport of glucose from serum was independent of the glucose concentration gradient between serum and perfusion fluid. However, when perfusion fluid glucose concentration was greater than that of serum, transport was inhibited. These studies suggest that in maintaining CSF glucose at a lower concentration than serum glucose, with equal amounts of glucose entering and leaving the CSF, 50% of CSF glucose concentration cleared is replaced by 25% of serum glucose concentration.  相似文献   

4.
1. Recycling of metabolites between fructose 6-phosphate and triose phosphates has been investigated in isolated hepatocytes by the randomization of carbon between C(1) and C(6) of glucose formed from [1-14C]galactose. 2. Randomization of carbon atoms was regularly observed with hepatocytes isolated from fed rats and was then little influenced by the concentration of glucose in the incubation medium. It was decreased by about 50% in the presence of glucagon. 3. Randomization of carbon atoms by hepatocytes isolated from starved rats was barely detectable at physiological concentrations of glucose in the incubation medium, but was greatly increased with increasing glucose concentrations. It was nearly completely suppressed by glucagon. These large changes can be attributed to parallel variations in the activity of phosphofructokinase. 4. The main factors that appear to control the activity of phosphofructokinase under these experimental conditions are the concentration of fructose 6-phosphate, the concentration of fructose 1,6-bisphosphate and also the affinity of the enzyme for fructose 6-phosphate. 5. The affinity of phosphofructokinase for fructose 6-phosphate was diminished by incubation of the cells in the presence of glucagon and also by filtration of an extract of hepatocytes through Sephadex G-25 and by purification of the enzyme. When assayed at 0.25 or 0.5mm-fructose 6-phosphate, the activity of phosphofructokinase present in a liver Sephadex filtrate was increased by a low-molecular-weight effector, which could be isolated from a liver extract by ultrafiltration, gel filtration or heat treatment, but was rapidly destroyed in trichloroacetic acid, even in the cold. This effector appears to be a highly acid-labile phosphoric ester. Its concentration was greatly increased in hepatocytes incubated in the presence of glucose and was decreased in the presence of glucagon.  相似文献   

5.
When islets from mice were incubated with 16.7 mM-glucose, previous starvation for 48 h decreased the rate of insulin release by approx. 50% and glucose utilization was decreased by approx. 35%. The maximally extractable activity of glucose 6-phosphate dehydrogenase was diminished by 28% after starvation. The formation of 14CO2 from both [1-14C]glucose was, however, higher than the rate of oxidation of [6-14C]-glucose in islets from both fed and starved mice. The fraction of glucose utilized that was oxidized (specific 14CO2 yield) ranged from one-fifth to one-third and was higher in islets from starved mice with both [1-14C]glucose and [6-14C]glucose as substrate. The contribution of pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose cycle and the turnover of NADPH in this pathway were identical in islets from fed and starved animals. After incubation at 16.7 mM-glucose for 30 min the contents of glucose (6-phosphate and 6-phosphogluconate were both unchanged by starvation. It is concluded that there is no correlation between the decreased sensitivity of the insulin secretory mechanism during starvation and the metabolism of glucose via the pentose cycle, the islet content of glucose 6-phosphate or 6-phosphogluconate.  相似文献   

6.
The dimorphic fungus Candida albicans is able to trigger a cytokine-mediated pro-inflammatory response that increases tumor cell adhesion to hepatic endothelium and metastasis. To check the intraspecific differences in this effect, we used an in vitro murine model of hepatic response against C. albicans, which made clear that tumor cells adhered more to endothelium incubated with blastoconidia, both live and killed, than germ tubes. This finding was related to the higher carbohydrate/protein ratio found in blastoconidia. In fact, destruction of mannose ligand residues on the cell surface by metaperiodate treatment significantly reduced tumor cell adhesion induced. Moreover, we also noticed that the effect of clinical strains was greater than that of the reference one. This finding could not be explained by the carbohydrate/protein data, but to explain these differences between strains, we analyzed the expression level of ten genes (ADH1, APE3, IDH2, ENO1, FBA1, ILV5, PDI1, PGK1, QCR2 and TUF1) that code for the proteins identified previously in a mannoprotein-enriched pro-metastatic fraction of C. albicans. The results corroborated that their expression was higher in clinical strains than the reference one. To confirm the importance of the mannoprotein fraction, we also demonstrate that blocking the mannose receptor decreases the effect of C. albicans and its mannoproteins, inhibiting IL-18 synthesis and tumor cell adhesion increase by around 60%. These findings could be the first step towards a new treatment for solid organ cancers based on the role of the mannose receptor in C. albicans-induced tumor progression and metastasis.  相似文献   

7.
Steven A Hill  Tom ap Rees 《Planta》1995,196(2):335-343
The effect of exogenous glucose on the major fluxes of carbohydrate metabolism in cores of climacteric fruit of banana (Musa cavendishii Lamb ex Paxton) was determined with the intention of using the effects in the application of top-down metabolic control analysis. Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21 °C. Cores were removed from climacteric fruit and incubated in 100 or 200 mM glucose for 4 or 6 h. The rates of starch breakdown, sucrose and fructose accumulation and CO2 production were measured. The steady-state contents of hexose monophosphates, adenylates and pyruvate were determined. In addition, the detailed distribution of label was determined after supply of the following: [U-14C]-, [1-14C]-, [3,414C]and [6-14C]glucose, and [U-14C]glycerol. The data were used to estimate the major fluxes of carbohydrate metabolism. Supply of exogenous glucose led to increases in the size of the hexose-monophosphate pools. There was a small stimulation of the rate of sugar synthesis and a major increase in the rate of starch synthesis. Starch breakdown was inhibited. Respiration responded to the demand for ATP by sugar synthesis. The effect of glucose on fluxes and metabolite pools is discussed in relation to our understanding of the control and regulation of carbohydrate metabolism in ripening fruit.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - AEC adenylate energy charge We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. SAH thanks the managers of the Broodbank Fund for a fellowship.  相似文献   

8.
Neutral ethanol-soluble sugar pools serve as carbohydrate reserves for Crassulacean acid metabolism (CAM) in pineapple (Ananas comosus (L.) Merr.) leaves. Levels of neutral soluble sugars and glucans fluctuated reciprocally with concentrations of malic acid. Hexose loss from neutral soluble-sugar pools was sufficient to account for malic acid accumulation with about 95% of the required hexose accounted for by turnover of fructose and glucose pools. Hexose loss from starch or starch plus lower molecular weight glucan pools was insufficient to account for nocturnal accumulation of malic acid. The apparent maximum catalytic capacity of pyrophosphate:6-phosphofructokinase (PPi-PFK) at 15°C was about 16 times higher than the mean maximum rate of glycolysis that occurred to support malic acid accumulation in pineapple leaves at night and 12 times higher than the mean maximum rate of hexose turnover from all carbohydrate pools. The apparent maximum catalytic capacity of ATP-PFK at 15°C was about 70% of the activity required to account for the mean maximal rate of hexose turnover from all carbohydrate pools if turnover were completely via glycolysis, and marginally sufficient to account for mean maximal rates of acidification. Therefore, at low night temperatures conducive to CAM and under subsaturating substrate concentrations, PPi-PFK activity, but not ATP-PFK activity, would be sufficient to support the rate of glycolytic carbohydrate processing required for acid accumulation. These data for pineapple establish that there are at least two types of CAM plants with respect to the nature of the carbohydrate reserve utilized to support nighttime CO2 accumulation. The data further indicate that the glycolytic carbohydrate processing that supports acidification proceeds in different subcellular compartments in plants utilizing different carbohydrate reserves.  相似文献   

9.
A series of cationic lipo-benzamide compounds with varying lengths of hydrocarbon chains (C2MC18M) were evaluated for anti-Candida activity. Four compounds harbouring 8–11 hydrocarbon chains demonstrated concentration-dependent inhibition of fungal cell growth with Minimum Inhibitory Concentration (MIC) of ≤6.2?µg?ml?1. The most active compound (C9M) inhibited growth of both Candida albicans and non-albicans strains and is equally active against pairs of azole sensitive and resistant clinical isolates of C. albicans. Compound C9M also inhibited different stages of Candida biofilms. Scanning Electron Microscopy (SEM) of Candida cells after C9M treatment was also done and no significant cell lysis was observed. Hemolysis assay was performed and only 2.5% haemolysis was observed at MIC concentration.  相似文献   

10.
Starch synthesis and CO2 evolution were determined after incubating intact and lysed wheat (Triticum aestivum L. cv. Axona) endosperm amyloplasts with 14C-labelled hexose-phosphates. Amyloplasts converted [U-14C]glucose 1-phosphate (Glc1P) but not [U-14C]glucose 6-phosphate (Glc6P) into starch in the presence of ATP. When the oxidative pentose-phosphate pathway (OPPP) was stimulated, both [U-14C]Glc1P and [U-14C]Glc6P were metabolized to CO2, but Glc6P was the better precursor for the OPPP, and Glc1P-mediated starch synthesis was reduced by 75%. In order to understand the basis for the partitioning of carbon between the two potentially competing metabolic pathways, metabolite pools were measured in purified amyloplasts under conditions which promote both starch synthesis and carbohydrate oxidation via the OPPP. Amyloplasts incubated with Glc1P or Glc6P alone showed little or no interconversion of these hexose-phosphates inside the organelle. When amyloplasts were synthesizing starch, the stromal concentrations of Glc1P and ADP-glucose were high. By contrast, when flux through the OPPP was highest, Glc1P and ADP-glucose inside the organelle were undetectable, and there was an increase in metabolites involved in carbohydrate oxidation. Measurements of the plastidial hexose-monophosphate pool during starch synthesis and carbohydrate oxidation indicate that the phosphoglucose isomerase reaction is at equilibrium whereas the reaction catalysed by phosphoglucomutase is significantly displaced from equilibrium. Received: 29 March 1997 / Accepted: 5 June 1997  相似文献   

11.
《Experimental mycology》1995,19(3):178-185
Molloy, C., Shepherd, M. G., and Sullivan, P. A. 1995. Differential extraction of N-acetylglucosaminidase and trehalase from the cell envelope of Candida albicans. Experimental Mycology 19, 178-185. Dithiothreitol (DTT) extraction of N-acetylglucosaminidase and trehalase from intact Candida albicans ATCC 10261 cells was monitored as an index of cell envelope porosity during N-acetylglucosamine-induced morphogenesis. Trehalase, which is secreted into the cell envelope during starvation and bud-formation, displayed similar extraction kinetics in starved, germ tube-forming, and bud-forming cells, indicating that the mother cell wall remains largely unchanged during morphogenic outgrowth and that the porosity of bud and mother cell walls is similar. N-acetylglucosaminidase, which is secreted specifically during morphogenesis, was released eightfold more rapidly from germ tube-forming than bud-forming cells, reflecting major differences in porosity between bud and germ tube. In addition, by assaying DTT extracts and extracted cell residues, it was found that the total extracellular N -acetylglucosaminidase activity increased 2- to 2.5-fold during DTT treatment. Thus, DTT unmasks a cryptic form of N-acetylglucosaminidase. The cryptic activity was associated with the cell wall fraction.  相似文献   

12.
Evidence is presented to show that all enzymes and all intermediary metabolites of a UDPglucose biosynthesis pathway are present in the microsomal membranes of rat liver. Glucose 6-phosphate, glucose 1-phosphate and UDPglucose are characterized by chromatography.The properties of phosphoglucomutase and UTP: D-Glucose-1-phosphate uridyltransferase are studied. The Km values of phosphoglucomutase at pH 7.2 and 42°C were 0.26 · 10?3 mM for glucose 1,6-diphosphate and 80 · 10?3 mM for glucose 1-phosphate. The Km values of UTP: D-glucose-1-phosphate uridyltransferase at pH 8.5 and 37°C were 220 · 10?3 mM for UTP and 166 · 10?3 mM for glucose 1-phosphate. These values are compared to the given values for enzymes from different species, and to those found for soluble enzymes. The significance of this membranous pathway is discussed.  相似文献   

13.
14.
The uptake of glucose and the formation of end products from glucose catabolism have been measured for sediments of eutrophic Wintergreen Lake with a combination of tritiated and 14C-labeled tracers. Time course analyses of the loss of [3H]glucose from sediments were used to establish rate constants for glucose uptake at natural substrate concentrations. Turnover times from these analyses were about 1 min for littoral and profundal sediments. No seasonal or site differences were noted in turnover times. Time course analyses of [U-14C]glucose uptake and 14C-labeled end product formation indicated that glucose mass flow could not be calculated from end product formation since the specific activity of added [14C]glucose was significantly diluted by pools of intracellular glucose and glucose metabolites. Mass flow could only be accurately estimated by use of rates of uptake from tracer studies. Intermediate fermentation end products included acetate (71%), propionate (15%), lactate (9%), and only minor amounts of butyrates or valerates. Addition of H2 to sediments resulted in greater production of lactate (28%) and decreased formation of acetate (50%), but did not affect glucose turnover. Depth profiles of glucose uptake indicated that rates of uptake decreased with depth over the 0- to 18-cm interval and that glucose uptake accounted for 30 to 40% of methanogenesis in profundal sediments.  相似文献   

15.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker’s yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker’s yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

16.
The dynamics of the glucose 6-phosphatase system were investigated in intact rat liver microsomes using a fast-sampling, rapid-filtration apparatus. Glucose and phosphate transport followed single exponential kinetics, appeared to be homogeneous, was unaffected by unlabeled substrate concentrations up to 100 mm, proved insensitive to various potential inhibitors, and demonstrated similarly low energies of activation. The extent of tracer accumulation from glucose 6-phosphate depended on which of the glucose or phosphate moieties was the labeled species in the parent molecule. The rates of tracer equilibration reflected those of glucose or phosphate transport but similar initial rates of uptake were observed for the glucose and phosphate products of hydrolysis. However, the latter accounted for only 12–13% of the steady-state rate of total glucose production. It is concluded that tracer uptake cannot represent substrate transport, that labeled glucose 6-phosphate at best represents a tiny fraction of the intramicrosomal glucose or phosphate pools, and that glucose 6-phosphate transport is not an obligatory prerequisite to its hydrolysis. The latter conclusion invalidates a major postulate of the substrate transport-catalytic unit concept but proves compatible with a conformational model whereby glucose 6-phosphate transport and hydrolysis are tightly coupled processes while glucose and phosphate share, along with water and a variety of other organic and inorganic solutes, a common porelike structure for their transport through the microsomal membrane. Received: 26 May 2000/Revised: 16 October 2000  相似文献   

17.
A significant problem which may be encountered in 13C NMR studies of metabolism is the contribution that background levels of 13C may make to the observed spectra when low or tracer levels of the 13C label are used. We propose that the introduction of two or more labeled sites in the same tracer molecule is an effective strategy for eliminating or reducing this difficulty and demonstrate its feasibility in an isotope dilution study of glucose turnover in a human volunteer. This approach has two significant advantages over the more common use of a singly enriched labeling strategy: (i) as a consequence of the scalar coupling interactions, multiple-labeled metabolites will yield spectra distinct from those containing natural abundance 13C, and (ii) at a 99% level of enrichment for the precursor, concentration levels which are approximately 1% of the endogenous pools can be detected with approximately equal sensitivity. As a demonstration of this strategy, glucose production in a human subject was determined by continuous infusion of tracer levels of [U-13C6]glucose over a 4-h period and subsequent analysis of plasma levels of the tracer in vitro by NMR. Mass spectroscopy was used on the same samples to provide a basis for comparison of the precision and accuracy of the NMR technique. The results demonstrate the feasibility of the multiply labeled approach for detection by NMR of tracer amounts of label in the presence of a much larger endogenous pool of glucose. The NMR and mass spectrometric data gave quantitatively identical results for the glucose production rate demonstrating that equivalent data may be obtained by both methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Carbohydrate metabolism of hepatocytes from starved Japanese quail   总被引:1,自引:0,他引:1  
Hepatocytes were isolated from livers of mature male and female starved Japanese quail (Coturnix coturnix japonica). The hepatocytes take up lactate and dihydroxyacetone extensively, and have a very high rate of glucose synthesis from these substrates. Fructose uptake and incorporation into glucose is much less. Pyruvate and alanine are taken up extensively, but form little glucose. There is negligible lipogenesis in cells of starved quail. Alanine increases up to 10-fold incorporation of 3HOH and 14C from several substrates into fatty acids, but it remains insignificant as compared to lipogenesis by cells of fed quail. There is little utilization of glucose, even in the presence of alanine, in marked contrast to hepatocytes from fed quail. However, glucose is phosphorylated at high rates, but most of the glucose 6-phosphate is recycled to glucose. There is a marked difference in the metabolism of polyols between the sexes. Glycerol, xylitol, and sorbitol are converted nearly quantitatively into glucose by hepatocytes of starved female quail. In cells of starved males, the uptake of polyols is higher, but conversion to glucose less efficient. In cells of starved male quail, alanine markedly stimulates the uptake of glycerol and xylitol and their conversion to glucose, but has no effect on sorbitol metabolism. In cells of female quail, alanine is without a significant effect on polyol metabolism.  相似文献   

19.
Enzymes of glucose metabolism in normal mouse pancreatic islets   总被引:14,自引:14,他引:0       下载免费PDF全文
1. Glucose-phosphorylating and glucose 6-phosphatase activities, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP+-linked isocitrate dehydrogenase, `malic' enzyme and pyruvate carboxylase were assayed in homogenates of normal mouse islets. 2. Two glucose-phosphorylating activities were detected; the major activity had Km 0.075mm for glucose and was inhibited by glucose 6-phosphate (non-competitive with glucose) and mannoheptulose (competitive with glucose). The other (minor) activity had a high Km for glucose (mean value 16mm) and was apparently not inhibited by glucose 6-phosphate. 3. Glucose 6-phosphatase activity was present in amounts comparable with the total glucose-phosphorylating activity, with Km 1mm for glucose 6-phosphate. Glucose was an inhibitor and the inhibition showed mixed kinetics. No inhibition of glucose 6-phosphate hydrolysis was observed with mannose, citrate or tolbutamide. The inhibition by glucose was not reversed by mannoheptulose. 4. 6-Phosphogluconate dehydrogenase had Km values of 2.5 and 21μm for NADP+ and 6-phosphogluconate respectively. 5. Glucose 6-phosphate dehydrogenase had Km values of 4 and 22μm for NADP+ and glucose 6-phosphate. The Km for glucose 6-phosphate was considerably below the intra-islet concentration of glucose 6-phosphate at physiological extracellular glucose concentrations. The enzyme had no apparent requirement for cations. Of a number of possible modifiers of glucose 6-phosphate dehydrogenase, only NADPH was inhibitory. The inhibition by NADPH was competitive with NADP+ and apparently mixed with respect to glucose 6-phosphate. 6. NADP+–isocitrate dehydrogenase was present but the islet homogenate contained little, if any, `malic' enzyme. The presence of pyruvate carboxylase was also demonstrated. 7. The results obtained are discussed with reference to glucose phosphorylation and glucose 6-phosphate oxidation in the intact mouse islet, and the possible nature of the β-cell glucoreceptor mechanism.  相似文献   

20.
Metabolic flux analysis, using 13C labeled substrates, has become a powerful methodology for quantifying intracellular fluxes. Most often, analysis is restricted to nuclear magnetic resonance or mass spectrometry measurement of 13C label incorporation into protein amino acids. However, amino acid isotopomer distribution insufficiently covers the entire network of central metabolism, especially in plant cells with highly compartmented metabolism, and analysis of other metabolites is required. Analysis of label in saccharides provides complementary data to better define fluxes around hexose, pentose, and triose phosphate pools. Here, we propose a gas chromatography-mass spectrometry (GC-MS) method to analyze 13C labeling in glucose and fructose moieties of sucrose, free glucose, fructose, maltose, inositol, and starch. Our results show that saccharide labeling for isotopomer quantification is better analyzed by chemical ionization than by electron ionization. The structure of the generated fragments was simulated and validated using labeled standards. The method is illustrated by analysis of saccharides extracted from developing rapeseed (Brassica napus L.) embryos. It is shown that glucose 6-phosphate isomerase and plastidial glucose 6-phosphate transport reactions are not at equilibrium, and light is shed on the pathways leading to fructose, maltose, and inositol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号