首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
TaxonomyBacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Lysobacterales (earlier synonym of Xanthomonadales); Family Lysobacteraceae (earlier synonym of Xanthomonadaceae); Genus Xanthomonas; Species X. hortorum; Pathovars: pv. carotae, pv. vitians, pv. hederae, pv. pelargonii, pv. taraxaci, pv. cynarae, and pv. gardneri.Host range Xanthomonas hortorum affects agricultural crops, and horticultural and wild plants. Tomato, carrot, artichoke, lettuce, pelargonium, ivy, and dandelion were originally described as the main natural hosts of the seven separate pathovars. Artificial inoculation experiments also revealed other hosts. The natural and experimental host ranges are expected to be broader than initially assumed. Additionally, several strains, yet to be assigned to a pathovar within Xhortorum, cause diseases on several other plant species such as peony, sweet wormwood, lavender, and oak‐leaf hydrangea.Epidemiology and control X. hortorum pathovars are mainly disseminated by infected seeds (e.g., Xhortorum pvs carotae and vitians) or cuttings (e.g., Xhortorum pv. pelargonii) and can be further dispersed by wind and rain, or mechanically transferred during planting and cultivation. Global trade of plants, seeds, and other propagating material constitutes a major pathway for their introduction and spread into new geographical areas. The propagules of some pathovars (e.g., X. horturum pv. pelargonii) are spread by insect vectors, while those of others can survive in crop residues and soils, and overwinter until the following growing season (e.g., Xhortorum pvs vitians and carotae). Control measures against Xhortorum pathovars are varied and include exclusion strategies (i.e., by using certification programmes and quarantine regulations) to multiple agricultural practices such as the application of phytosanitary products. Copper‐based compounds against Xhortorum are used, but the emergence of copper‐tolerant strains represents a major threat for their effective management. With the current lack of efficient chemical or biological disease management strategies, host resistance appears promising, but is not without challenges. The intrastrain genetic variability within the same pathovar poses a challenge for breeding cultivars with durable resistance.Useful websites https://gd.eppo.int/taxon/XANTGA, https://gd.eppo.int/taxon/XANTCR, https://gd.eppo.int/taxon/XANTPE, https://www.euroxanth.eu, http://www.xanthomonas.org, http://www.xanthomonas.org/dokuwiki  相似文献   

11.
12.
13.
14.
This Editorial describes both the motivation for, and the five articles appearing in, the Issue Focus dedicated to the 2nd Costa Rica Biophysics Symposium which was held in March 2021. Some recent history about both the symposium and developments in science occurring within Costa Rica is described. 

The Costa Rica Biophysics Symposium was conceived as a forum for faculty, scholars and students interested on cutting-edge topics in biophysics and related fields. Following the success of the first event organized in 2019 (Solís et al (2020), the second edition of the symposium took place on March 2021 with the support of the Academia Nacional de Ciencias de Costa Rica (ANC, National Academy of Sciences of Costa Rica), the International Union of Pure and Applied Biophysics (IUPAB), the German Society of Biophysics (DGfB), and the Universidad Nacional of Costa Rica (UNA). The symposium aimed to reinforce and enhance the novel network of investigators established in the 2019 event. Participation of Costa Rican presenters, either located in the country or abroad, and foreign scientists from the USA, Germany, France, and Switzerland (Solís et al. (2021a) translated into an expansion and internationalization of the previous network. Moreover, the symposium attracted a broad international audience, which increases the opportunities of further international collaboration.The meeting was organized into 14 presentations and one keynote lecture. It was attended by researchers of the three main universities of Costa Rica: Universidad Nacional (UNA), Universidad de Costa Rica (UCR) and Tecnológico de Costa Rica (TEC). Presenters from international universities were also present, including UT Southwestern Medical Center, USA; Klinikum Nürnberg Medical School, Germany; École Polytechnique Fédérale de Lausanne, Switzerland; Institut de Neurosciences de Montpellier, France; University of California Berkeley, USA; and The University of Chicago, USA. The topics presented in the symposium were diverse and covered cutting-edge biophysical research areas. The presentations ranged from channel electrophysiology, machine learning focused on cellular microscopy, prediction of protein–protein interactions, channelopathies and novel biophysical techniques, among others (Solís et al., 2021a). Furthermore, each lecture was followed by questions from the audience, allowing discussion, engagement and interaction between researchers in spite of the limitations of a virtual symposium. The closing event for the symposium was a lecture by the world-renowned biophysicist Francisco Bezanilla from the University of Chicago, who engaged the audience into a master presentation of his vast research on protein voltage-sensor domains (VSD) with a focus on his recent work on the non-canonical mechanisms for VSD-mediated regulation of pore domains in voltage-gated potassium channels (Carvalho-de-Souza and Bezanilla 2019). After the consequent discussion, the symposium finished with a networking activity, where audience and presenters were able to socialize and share experiences.  相似文献   

15.
16.
17.
Paridris in the New World is revised (Hymenoptera: Platygastridae). Fifteen species are described, of which 13 are new. Paridris aenea (Ashmead)(Mexico (Tamaulipas) and West Indies south to Bolivia and southern Brazil (Rio de Janeiro state)), Paridris armata Talamas, sp. n. (Venezuela), Paridris convexa Talamas, sp. n. (Costa Rica, Panama), Paridris dnophos Talamas, sp. n. (Mexico (Vera Cruz) south to Bolivia and central Brazil (Goiás)), Paridris gongylos Talamas & Masner, sp. n. (United States: Appalachian Mountains of Virginia, Tennessee, South Carolina), Paridris gorn Talamas & Masner, sp. n. (United States: Ohio south to Alabama, Georgia), Paridris invicta Talamas & Masner, sp. n. (Brazil: São Paulo), Paridris isabelicae Talamas & Masner, sp. n. (Cuba, Dominican Republic), Paridris lemete Talamas & Masner, sp. n. (Puerto Rico), Paridris minor Talamas, sp. n. (Cuba), Paridris nayakorum Talamas, sp. n. (Costa Rica), Paridris pallipes (Ashmead)(southeastern Canada, United States south to Costa Rica, also Brazil (São Paulo), Paridris psydrax Talamas & Masner, sp. n. (Argentina, Mexico, Paraguay, United States, Venezuela), Paridris saurotos Talamas, sp. n. (Jamaica), Paridris soucouyant Talamas & Masner, sp. n. (Colombia, Trinidad and Tobago, Venezuela). Paridris brevipennis Fouts, Paridris laeviceps (Ashmead), and Paridris nigricornis (Fouts) are treated as junior synonyms of Paridris pallipes; Paridris opaca is transferred to Probaryconus. Lectotypes are designated for Idris aenea Ashmead and Caloteleia aenea Ashmead.  相似文献   

18.
19.
Ovicides paralithodissp. n. is described from the egg mass of the red king crab Paralithodes camtschaticus (Tilesius, 1815) from the Sea of Okhotsk, off Hokkaido, Japan, and Alaska, USA. Among four congeners, Ovicides paralithodis can be distinguished from Ovicides julieae Shields, 2001 and Ovicides davidi Shields and Segonzac, 2007 by having no eyes; from Ovicides jonesi Shields and Segonzac, 2007 by the presence of basophilic, vacuolated glandular lobes in the precerebral region; and from Ovicides jasoni Shields and Segonzac, 2007 by the arrangement of the acidophilic submuscular glands, which are not arranged in a row. Ovicides paralithodis represents the third described species of egg-predatory nemertean from Paralithodes camtschaticus, the second described carcinonemertid species from Japan, and the 21st described species in the family. The intensity of infestations may exceed 24,000 worms per a single egg-bearing pleopod of Paralithodes camtschaticus. A preliminary molecular phylogenetic analysis based on sequences of 28S rRNA and cytochrome c oxidase subunit I genes among selected monostiliferous hoplonemertean species supported the monophyly of Carcinonemertidae, suggesting that within the lineage of the family, evolution of the unique vas deferens, Takakura’s duct, preceded loss of accessory stylets and accessory-stylet pouches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号