首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Podojil  M.  Ševčík  V.  Kuhr  I.  Fuska  J. 《Folia microbiologica》1961,6(4):273-276
Folia Microbiologica - The possibility of isolation of gibberellic acid by means of ion exchange resins was ascertained. The strongly basic anion exchange resins, Amberlite IRA-400, Fluka, Zerolit...  相似文献   

2.
Summary The temperature effect on the performance of gas phase bioreactions (batch and continuous) was investigated using immobilized alcohol oxidase on Amberlite IRA-400. Reaction rates and product (acetaldehyde) compositions were compared as functions of temperature; there is a reaction temperature corresponding to a trade-off point between reaction rate and reaction extent.  相似文献   

3.
The immobilization of glucose isomerase (D-xylose ketol isomerase, EC 5.3.1.5) by covalently bonding to various carriers and by adsorption to ion exchange resins was attempted in order to obtain a stable immobilized enzyme which can be used for continuous isomerization of glucose in a column. Of the covalent bonding methods, the colloidal silica-glutaraldehyde method showed the highest binding capacity and gave the most stable immobilized glucose isomerase. The Ludox HS-30 bound glucose isomerase column showed a half-life of 24 days and an enzyme usage of 0.07 units per gram of isomerized sugar (d.s, fructose 45%). Of the resins used, the macromolecular type or porous type strongly basic anion exchange resins showed the highest binding capacity and gave the most stable immobilized glucose isomerase. The Amberlite IRA-904 resine-bound glucose isomerase showed a half-life of 23 days and an enzyme usage of 0.06 units per gram of isomerized sugar (d.s., fructose 45%). Based on the ease of the immobilization process, the possibility of carrier reuse and the extensive use already achieved by ion exchange resins in the sugar industry, IRA-904 resin was selected as the candidate for commercialization.  相似文献   

4.
We evaluated the effects of the sample feeding and mixing methods on the efficiency of vancomycin crystallization and developed a method to dramatically shorten the time required for crystal formation by increasing the available surface area inside the reactor. The highest purity (97%) and yield (99%) of vancomycin could be obtained with an initial one-step feeding and mixing method, resulting in the formation and growth of spherical fan-shaped crystals. The yield of vancomycin increased when the surface area per working volume (S/V) was increased to 0.428 mm−1 using glass beads (0.5 mm), the cation exchange resin Amberlite 200, or the anion exchange resin Amberlite IRA-400. In particular, most of the vancomycin (>99%) could be recovered after 6 h of crystallization using Amberlite 200, resulting in a dramatic reduction in the time required for crystallization. On the other hand, increasing S/V had almost no effect on vancomycin purity and crystal size.  相似文献   

5.
α-Amylase was immobilized on Dowex MAC-3 with 88 % yield and amyloglucosidase on Amberlite IRA-400 ion-exchange resin beads with 54 % yield by adsorption process. Immobilized enzymes were characterized to measure the kinetic parameters and optimal operational parameters. Optimum substrate concentration and temperature were higher for immobilized enzymes. The thermal stability of the enzymes enhanced after the immobilization. Immobilized enzymes were used in the hydrolysis of the natural starch at high concentration (35 % w/v). The time required for liquefaction of starch to 10 dextrose equivalent (DE) and saccharification of liquefied starch to 96 DE increased. Immobilized enzymes showed the potential for use in starch hydrolysis as done in industry.  相似文献   

6.
Hemicellulose is a potential by-product currently under-utilized in the papermaking industry. It is a hetero-carbohydrate polymer. For hardwood hemicelluloses, D-xylose is the major component upon depolymerization. At SUNY-ESF, wood extracts were obtained by extracting sugar maple wood chips with hot water at an elevated temperature. The wood extracts were then concentrated and acid hydrolyzed. Ethanologenic bacteria, E. coli FBR5, had a good performance in pure xylose medium for ethanol production. However, FBR5 was strongly inhibited in dilute sulfuric acid hydrolyzate of hot-water wood extract. FBR5 was challenged by hot-water wood extract hydrolyzate in this study. After repeated strain adaptation, an improved strain: E. coli FBHW was obtained. Fermentation experiments indicated that FBHW was resistant to the toxicity of hydrolyzate in the fermentation media of concentrated hydrolyzate, and xylose was completely utilized by the strain to produce ethanol. FBHW was grown in the concentrated hydrolyzate without any detoxification treatment and has yielded 36.8 g/L ethanol.  相似文献   

7.
The gas phase continuous production of acetaldehyde was studied with particular emphasis on the development of biocatalyst (alcohol oxidase on solid phase support materials) for a fixed bed reactor. Based on the experimental results in a batch bioreactor, the biocatalysts were prepared by immobilization of alcohol oxidase on Amberlite IRA-400, packed into a column, and the continuous acetaldehyde production in the gas phase by alcohol oxidase was performed. The effects of the reaction temperature, flow rates of gaseous stream, and ethanol vapor concentration on the performance of the continuous bioreactor were investigated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
Lactic acid fermentation is an end product inhibited reaction. In situ separation of lactic acid from fermentation broth using ion exchange resins was investigated and compared with conventional fermentation system. Amberlite resin (IRA-400, Cl) was used to separate lactic acid from fermentation broth and pH was controlled online with an automatic pH controller. The effect of process variables on lactic acid production by Lactobacillus casei in whey permeate was studied. The maximum productivity was obtained at pH = 6.1, T = 37 °C and impeller speed = 200 rpm. The maximum concentration of lactic acid at optimum condition was found to be 37.4 g/L after 38 h of fermentation using in situ separation system. The productivity of in situ separation system was five times increased in comparison with conventional system.  相似文献   

9.
Gao Q  Liu F  Zhang T  Zhang J  Jia S  Yu C  Jiang K  Gao N 《PloS one》2010,5(11):e13948

Background

The polyacrylic resin Amberlite IRA-67 is a promising adsorbent for lactic acid extraction from aqueous solution, but little systematic research has been devoted to the separation efficiency of lactic acid under different operating conditions.

Methodology/Principal Findings

In this paper, we investigated the effects of temperature, resin dose and lactic acid loading concentration on the adsorption of lactic acid by Amberlite IRA-67 in batch kinetic experiments. The obtained kinetic data followed the pseudo-second order model well and both the equilibrium and ultimate adsorption slightly decreased with the increase of the temperature at 293–323K and 42.5 g/liter lactic acid loading concentration. The adsorption was a chemically heterogeneous process with a mean free energy value of 12.18 kJ/mol. According to the Boyd_plot, the lactic acid uptake process was primarily found to be an intraparticle diffusion at a lower concentration (<50 g/liter) but a film diffusion at a higher concentration (>70 g/liter). The values of effective diffusion coefficient Di increased with temperature. By using our Equation (21), the negative values of ΔG° and ΔH° revealed that the adsorption process was spontaneous and exothermic. Moreover, the negative value of ΔS° reflected the decrease of solid-liquid interface randomness at the solid-liquid interface when adsorbing lactic acid on IRA-67.

Conclusions/Significance

With the weakly basic resin IRA-67, in situ product removal of lactic acid can be accomplished especially from an open and thermophilic fermentation system without sterilization.  相似文献   

10.
《Process Biochemistry》2010,45(8):1368-1374
A micelle-fractional precipitation hybrid process was developed for the effective pre-purification of the anticancer agent paclitaxel extracted from plant cell cultures. First, it was found that the efficiency of such a developed process could be remarkably enhanced by removing waxy substances originating from plant cells using the adsorbent sylopute. Paclitaxel yield was improved and the fractional precipitation time was shortened by increasing the surface area per working volume (S/V) of the reacting solution through the addition of a cation exchange resin (Amberlite IR120 or Amberlite 200), an anion exchange resin (Amberlite IRA400 or Amberlite IRA96), or glass beads. Most of the paclitaxel (>98%) could be obtained after about 12 h of fractional precipitation using Amberlite 200. Purity increased with increasing fractional precipitation time up to 9 h to about 85%, after which it showed little change. On the other hand, no paclitaxel precipitate was formed using either of the nonionic exchange resins because paclitaxel, which is hydrophobic, was strongly adsorbed on the hydrophobic resin surface. Since high-purity paclitaxel can be obtained in high yield and the precipitation time can be reduced by combining micelle formation with fractional precipitation, this hybrid method is expected to significantly enhance the final purification process.  相似文献   

11.
Aspergillus niger was grown on Amberlite IRA-900 imbibed with a solution containing high concentrations of sucrose (Si = 100, 200, 300 and 400 g/litre) in static aerated fermentors. Growth was followed in dry biomass, biomass protein, CO2 production and pressure drop (DP). The DP allowed the monitoring of germination, vegetative growth, limitation and the onset of sporulation for the four concentrations of sucrose studied. Concentrations up to 103 mg dry biomass/g dry support were obtained with Si = 400 g/litre and these reduced the relative intrinsic permeability to 0·0125. Under this condition the mould occupies 34% of the free space. DP increase was related to CO2 production.  相似文献   

12.
Protein tyrosine phosphatase 1B (PTP1B) is an important factor in non-insulin-dependent diabetes mellitus (type-2 diabetes), and a promising target for treatment of diabetes and obesity. Therefore, the aim of this study is to investigate the inhibitory activities of constituents (three new together with twelve known triterpenes compounds) isolated from the hydrolyzate of total saponins from Gynostemma pentaphyllum. Their structures were accomplished mainly base on the spectroscopic methods, and then were further confirmed by X-ray crystal diffraction. All the compounds were evaluated for inhibitory activity against PTP1B. Current data suggested that the compounds 1, 3, 12, 13 and 14 were considered to be potential as antidiabetic agents, in which they could significantly inhibit the PTP1B enzyme activity in a dose-dependent manner.  相似文献   

13.
The use of dilute acids to catalyze the hydrolysis of hemicellulose to its sugar constituents is well-known and effective. However, a major problem associated with this pretreatment is the poor fermentability of the produced hydrolyzate as a result of the presence of the microorganism's inhibitory compounds. In the present work, seven ion-exchange resins were tested in order to detoxify corn stover hydrolyzate. Regarding xylose recovery, it was observed that more than 92% recovery was feasible. Furfural removal varied from 53.% to 99.%, and hydroxymethylfurfural (HMF) removal was effective between 37% and 100%. Acetic acid was totally removed by Purolite A 103 S resin. Corn stover hydrolyzate (CSH) treated with Purolite A 103 S, and Finex CS 14 GC resins, was tested as substrate for xylitol production using a yeast, Candida mogii. Product yields, Yp/s, of 0.41 and 0.37 g/g and cellular yields, Yx/s, of 0.24 and 0.13 g/g, respectively, were obtained using the two types of resin-treated hydrolyzates.  相似文献   

14.
Abstract: Endogenous inhibitors of Na,K-ATPase and ouabain-binding were partially purified from bovine central nervous system, and some of their properties were studied. They were eluted as low-molecular-weight fractions by gel filtration. They could be adsorbed by both Amberlite IR 120 and Amberlite IRA 400 at acidic and basic pH, respectively, indicating that they could act as both anions and cations at different pH. These inhibitors of ouabain-binding appeared to affect specific binding of ouabin, and Scatchard plot analysis showed that the in hibition was competitive, suggesting that they could bind to the same site as ouabain, presumably to Na,K-ATPase itself. The inhibitory activities were heat stable, but charring inactivated them completely.  相似文献   

15.
Sixteen disubstituted 1,2,3-triazoles were prepared using the Huisgen cycloaddition reaction and evaluated as inhibitors against caspase-3. The two most potent inhibitors were found to be (S)-1-((1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1H-1,2,3-triazol-4-yl)methyl)-5-((2-(methoxymethyl)pyrrolidin-1-yl)sulfonyl)indoline-2,3-dione (7f) and (S)-1-((1-benzyl-1H-1,2,3-triazol-5-yl)methyl)-5-((2-(methoxymethyl)pyrrolidin-1-yl)sulfonyl)indoline-2,3-dione (8g) with IC50-values of 17 and 9 nM, respectively. Lineweaver-Burk plots revealed that these two triazoles show competitive inhibitory mechanism against caspase-3.  相似文献   

16.
Microbial Hydrocarbon Co-oxidation. II. Use of Ion-Exchange Resins   总被引:5,自引:3,他引:2       下载免费PDF全文
Anion-exchange resins, a weakly basic polystyrene-polyamine type and a macro-reticular type, IR-45 and IRA-93, respectively, were shown to significantly increase yields of acidic products in co-oxidation systems. p-Toluic, 2,3-dihydroxy-p-toluic, and alpha,alpha-cis,cis dimethylmuconic acids, resulting from the oxidation of p-xylene by three cultures of Nocardia, accumulated on the resin in shaken flasks or agar plates during the cultivation. Final product concentration increased with increasing resin concentration. Mineral balances were not affected if the resin was properly conditioned before use.  相似文献   

17.
The physicochemical properties (capacity, kinetics and selectivity) of the ion exchange resins Amberlite IRA900, IRA400, IRA96 and IRA67 were determined to evaluate their comparative suitability for lactic acid recovery. Both the kinetics of lactic acid sorption from aqueous solutions and the equilibrium were assessed using mathematical models, which provided a close interpretation of the experimental results. The best resins (Amberlite IRA96 and IRA67) were employed in further fixed-bed operation using aqueous lactic acid solutions as feed. In this set of experiments, parameters such as capacity, regenerant consumption, percentage of lactic acid recovery and product concentration were measured. Amberlite IRA67, a weak base resin, was selected for lactic acid recovery from SSF (simultaneous saccharification and fermentation) broths. Owing to the presence of nutrients and ions other than lactate, a slightly decreased capacity was determined when using SSF media instead aqueous lactic acid solutions, but quantitative lactic acid recoveries at constant capacities were obtained in four sequential load/regeneration cycles.  相似文献   

18.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are promising drug development targets due to their implications in pathologies such as cancer and neurodegenerative diseases. The search for IDO1 inhibitor has been intensely pursued but there is a paucity of potent TDO and IDO1/TDO dual inhibitors. Natural product tryptanthrin has been confirmed to bear IDO1 and/or TDO inhibitory activities. Herein, twelve novel tryptanthrin derivatives were synthesized and evaluated for the IDO1 and TDO inhibitory potency. All of the compounds were found to be IDO1/TDO dual inhibitors, in particular, compound 9a and 9b bore IDO1 inhibitory activity similar to that of INCB024360, and compound 5a and 9b had remarkable TDO inhibitory activity superior to that of the well-known TDO inhibitor LM10. This work enriches the collection of IDO1/TDO dual inhibitors and provides chemical molecules for potential development into drugs.  相似文献   

19.
In this study on the valorization of hemicelluloses (a co-product generated during cellulosic bioethanol production), prehydrolyzates obtained from poplar woodchips pretreated in an industrial experimental steam-explosion pilot-plant facility were evaluated for the production of bioxylitol using the yeast, Candida guilliermondii FTI 20037, employing both batch and fed-batch fermentation modes in shake flasks on defined nutrient medium. The prehydrolyzates consisted of monosaccharides (pentose and hexose sugars) as well as xylo-oligosaccharides and undegraded hemicellulose. Xylose (31.6?±?0.57 g/L) was the major sugar in the prehydrolyzates that also contained acetic acid and degradation products of lignin and sugars (phenolic and furanic compounds). Xylose in the prehydrolyzates could be further increased (106.4?±?0.02 g/L) through an acid hydrolysis step (0.6 % (w/v) H2SO4). Compounds of a toxic nature in both the acid hydrolyzates and prehydrolyzates were removed by treatment with Amberlite IRA-400 resin (chloride form). Batch fermentation of pure xylose and poplar prehydrolyzate resulted in bioxylitol production of 9.9?±?0.01 and 4.9?±?0.17 g/L, respectively, indicating that the poplar prehydrolyzates exhibited an inhibitory effect on fermentation. After detoxification of the poplar prehydrolyzates, bioxylitol production increased to 8.9?±?0.01 g/L. Fed-batch fermentation of the prehydrolyzate increased the bioxylitol production to 12.39?±?0.33 g/L, while acid hydrolysis followed by detoxification resulted in a maximum bioxylitol production of 22.0?±?0.01 g/L, a 348 % increase. The results demonstrated that acid hydrolysis and detoxification followed by fed-batch fermentation was an efficient way to produce bioxylitol from poplar prehydrolyzates.  相似文献   

20.
During our continued search for strong skin whitening agents over the past ten years, we have investigated the efficacies of many tyrosinase inhibitors containing a common (E)-β-phenyl-α,β-unsaturated carbonyl scaffold, which we found to be essential for the effective inhibition of mushroom and mammalian tyrosinases. In this study, we explored the tyrosinase inhibitory effects of 2,3-diphenylacrylic acid (2,3-DPA) derivatives, which also possess the (E)-β-phenyl-α,β-unsaturated carbonyl motif. We synthesized fourteen (E)-2,3-DPA derivatives 1a1n and one (Z)-2,3-DPA-derivative 1l′ using a Perkin reaction with phenylacetic acid and appropriate substituted benzaldehydes. In our mushroom tyrosinase assay, 1c showed higher tyrosinase inhibitory activity (76.43 ± 3.53%, IC50 = 20.04 ± 1.91 µM) with than the other 2,3-DPA derivatives or kojic acid (21.56 ± 2.93%, IC50 = 30.64 ± 1.27 μM). Our mushroom tyrosinase inhibitory results were supported by our docking study, which showed compound 1c (−7.2 kcal/mole) exhibited stronger binding affinity for mushroom tyrosinase than kojic acid (−5.7 kcal/mole). In B16F10 melanoma cells (a murine cell-line), 1c showed no cytotoxic effect up to a concentration of 25 μM and exhibited greater tyrosinase inhibitory activity (68.83%) than kojic acid (49.39%). In these cells, arbutin (a well-known tyrosinase inhibitor used as the positive control) only inhibited tyrosinase by 42.67% even at a concentration of 400 μM. Furthermore, at 25 µM, 1c reduced melanin contents in B16F10 melanoma cells by 24.3% more than kojic acid (62.77% vs. 38.52%). These results indicate 1c is a promising candidate treatment for pigmentation-related diseases and potential skin whitening agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号