首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Conidial germination and differentiation – the so-called prepenetration processes – of the barley powdery mildew fungus (Blumeria graminis f. sp. hordei) are essential prerequisites for facilitating penetration of the host cuticle. Although the cell cycle is known to be pivotal to cellular differentiation in several phytopathogenic fungi there is as yet no information available concerning the relationship between cell cycle and infection structure development in the obligate biotroph B. graminis. The timing of specific developmental events with respect to nuclear division and morphogenesis was followed on artificial and host leaf surfaces by 4′,6-diamidino-2-phenylindole (DAPI) staining in combination with a pharmacological approach applying specific cell cycle inhibitors. It was found that the uninucleate conidia germinated and then underwent a single round of mitosis 5–6 h after inoculation. During primary germ tube formation the nucleus frequently migrated close to the site of primary germ tube emergence. This nuclear repositioning was distinctly promoted by very-long-chain aldehydes that are common host cuticular wax constituents known to induce conidial differentiation. The subsequent morphogenesis of the appressorial germ tube preceded mitosis that was spatially uncoupled from subsequent cytokinesis. Blocking of S-phase with hydroxyurea did not inhibit formation of the appressorial germ tube but prevented cytokinesis and appressorium maturation. Benomyl treatment that arrests the cell cycle in mitosis inhibited nuclear separation, cytokinesis, and formation of mature appressoria. Thus, we conclude that a completed mitosis is not a prerequisite for the formation and swelling of the appressorial germ tube, which normally provides the destination for one of the daughter nuclei, while appressorium maturation depends on mitosis.  相似文献   

3.
Appressorium formation and nuclear division in Colletotrichum truncatum   总被引:1,自引:0,他引:1  
Conidia of the soybean anthracnose fungus, Colletotrichum truncatum differentiate to form appressoria required for host invasion when the germ tube touches a hard surface. This thigmotrophic stimulus appears to be translated by the fungus during the second round of nuclear division. Inhibiting the second round of DNA synthesis by fluorodeoxyuridine or hydroxyurea blocked appearance of appressoria but not emergence of the germ tube. DNA synthesis and mitosis resumed upon removal of FUdR but only mycelia formed, and infection structures did not appear. In addition, actinomycin D reversibly blocked development of appressoria and synthesis of polyadenylate, but nuclear division was not affected. The data suggest that anthracnose conidia produce appressoria in response to germ tube contact by altering the messenger program of its germ tube nucleus. This study has also shown that mitochondrial DNA had an unusual bimodal distribution in CsCl at 1.690 and 1.719 g/cm3, respectively.Non-Standard Abbreviations FUdR 5-fluorodeoxyuridine - polyA polyadenylic acid  相似文献   

4.
5.
When certain phytopathogenic fungi contact plant surfaces, specialized infection structures (appressoria) are produced that facilitate penetration of the plant external barrier; the cuticle. Recognition of this hydrophobic host surface must be sensed by the fungus, initiating the appropriate signaling pathway or pathways for pathogenic development. Using polymerase chain reaction and primers designed from mammalian protein kinase C sequences (PKC), we have isolated, cloned, and characterized a protein kinase from Colletotrichum trifolii, causal agent of alfalfa anthracnose. Though sequence analysis indicated conserved sequences in mammalian PKC genes, we were unable to induce activity of the fungal protein using known activators of PKC. Instead, we show that the C. trifolii gene, designated LIPK (lipid-induced protein kinase) is induced specifically by purified plant cutin or long-chain fatty acids which are monomeric constituents of cutin. PKC inhibitors prevented appressorium formation and, to a lesser extent, spore germination. Overexpression of LIPK resulted in multiple, abnormally shaped appressoria. Gene replacement of lipk yielded strains which were unable to develop appressoria and were unable to infect intact host plant tissue. However, these mutants were able to colonize host tissue following artificial wounding, resulting in typical anthracnose lesions. Taken together, these data indicate a central role in triggering infection structure formation for this protein kinase, which is induced specifically by components of the plant cuticle. Thus, the fungus is able to sense and use host surface chemistry to induce a protein kinase-mediated pathway that is required for pathogenic development.  相似文献   

6.
Botrytis cinerea is a necrotrophic fungus that infects a wide range of fruit, vegetable and flower crops. Penetration of the host cuticle occurs via infection structures that are formed in response to appropriate plant surface signals. The differentiation of these structures requires a highly conserved mitogen‐activated protein (MAP) kinase cascade including the MAP kinase BMP1. In yeast and several plant‐pathogenic fungi, the signalling mucin Msb2 has been shown to be involved in surface recognition and MAP kinase activation. In this study, a B. cinerea msb2 mutant was generated and characterized. The mutant showed normal growth, sporulation, sclerotia formation and stress resistance. In the absence of nutrients, abnormal germination with multiple germ tubes was observed. In the presence of sugars, normal germination occurred, but msb2 germlings were almost unable to form appressoria or infection cushions on hard surfaces. Nevertheless, the msb2 mutant showed only a moderate delay in lesion formation on different host plants, and formed expanding lesions similar to the wild‐type. Although the wild‐type showed increasing BMP1 phosphorylation during the first hours of germination on hard surfaces, the phosphorylation levels in the msb2 mutant were strongly reduced. Several genes encoding secreted proteins were found to be co‐regulated by BMP1 and Msb2 during germination. Taken together, B. cinerea Msb2 is likely to represent a hard surface sensor of germlings and hyphae that triggers infection structure formation via the activation of the BMP1 MAP kinase pathway.  相似文献   

7.
The rice blast fungus, Magnaporthe grisea, forms a dome-shaped and darkly pigmented infection structure, an appressorium, to penetrate its host. Differentiation and maturation of appressoria are critical steps for successful infection. A spontaneous developmental mutant (MG01) defective in appressorium formation was found in this fungus. The mutant did not form appressoria either on inductive hydrophobic surfaces or on rice leaves. The addition of cyclic AMP or 1,16-hexadecanediol was not effective in inducing appressorium formation in this mutant. This mutant did not cause lesions on rice when inoculated with conidial suspension by spraying or injecting into the leaf sheath. Genetic analysis of the mutant indicated that the phenotype is under single gene control, designated APP5. Crosses with previously described appressorium defective mutants (app1 and app3) of Magnaporthe grisea suggested that the mutations are at different loci. Bulked segregant analysis was employed to obtain DNA markers linked to the APP5 locus.  相似文献   

8.
To gain entry to plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we demonstrate that appressorium morphogenesis in the rice blast fungus Magnaporthe oryzae is tightly regulated by the cell cycle. Shortly after a fungus spore lands on the rice (Oryza sativa) leaf surface, a single round of mitosis always occurs in the germ tube. We found that initiation of infection structure development is regulated by a DNA replication-dependent checkpoint. Genetic intervention in DNA synthesis, by conditional mutation of the Never-in-Mitosis 1 gene, prevented germ tubes from developing nascent infection structures. Cellular differentiation of appressoria, however, required entry into mitosis because nimA temperature-sensitive mutants, blocked at mitotic entry, were unable to develop functional appressoria. Arresting the cell cycle after mitotic entry, by conditional inactivation of the Blocked-in-Mitosis 1 gene or expression of stabilized cyclinB-encoding alleles, did not impair appressorium differentiation, but instead prevented these cells from invading plant tissue. When considered together, these data suggest that appressorium-mediated plant infection is coordinated by three distinct cell cycle checkpoints that are necessary for establishment of plant disease.  相似文献   

9.
Kim YK  Kawano T  Li D  Kolattukudy PE 《The Plant cell》2000,12(8):1331-1344
Differentiation of fungal conidia of phytopathogens into the infection structure, appressorium, requires contact with a hard surface and host signals. The molecular signaling involved in the induction of this differentiation is poorly understood. We report the cloning of a mitogen-activated protein kinase kinase (MEK), CgMEK, from Colletotrichum gloeosporioides and its role in the induction of these developmental processes involved in pathogenesis. Disruption of CgMEK1 resulted in the loss of its ability to form appressoria in response to the host's signals and a loss of virulence. Results of confocal microscopic examination of germinating conidia of the gene-disrupted mutants were similar to those for wild-type conidia treated with an MEK inhibitor, suggesting that CgMEK1 is involved in two developmental processes in the differentiation into appressorium: (1) polarized cell division, with the preferential increase in F-actin in one of the daughter nuclei after nuclear division and the formation of septum; and (2) differentiation of the germ tube into an appressorium. CgMEK1 is required for the differentiation.  相似文献   

10.
Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently.  相似文献   

11.
To infect plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we report that appressorium development in the rice blast fungus Magnaporthe oryzae involves an unusual cell division, in which nuclear division is spatially uncoupled from the site of cytokinesis and septum formation. The position of the appressorium septum is defined prior to mitosis by formation of a heteromeric septin ring complex, which was visualized by spatial localization of Septin4:green fluorescent protein (GFP) and Septin5:GFP fusion proteins. Mitosis in the fungal germ tube is followed by long-distance nuclear migration and rapid formation of an actomyosin contractile ring in the neck of the developing appressorium, at a position previously marked by the septin complex. By contrast, mutants impaired in appressorium development, such as Δpmk1 and ΔcpkA regulatory mutants, undergo coupled mitosis and cytokinesis within the germ tube. Perturbation of the spatial control of septation, by conditional mutation of the SEPTATION-ASSOCIATED1 gene of M. oryzae, prevented the fungus from causing rice blast disease. Overexpression of SEP1 did not affect septation during appressorium formation, but instead led to decoupling of nuclear division and cytokinesis in nongerminated conidial cells. When considered together, these results indicate that SEP1 is essential for determining the position and frequency of cell division sites in M. oryzae and demonstrate that differentiation of appressoria requires a cytokinetic event that is distinct from cell divisions within hyphae.  相似文献   

12.
寄主识别与附着胞分化是虫生真菌启动侵染过程的首要步骤。本文利用先前获得的金龟子绿僵菌基因缺失突变株与其野生型一起进行附着胞分化研究。接种后不同时间下的观察表明,绿僵菌突变株或野生型的附着胞既可以在萌发不久的芽管顶端形成,也可以在伸长菌丝分支的顶端形成。与野生型不同的是,突变株附着胞的分化频率显著下降,附着胞周围也缺乏粘液层的产生。研究表明,绿僵菌的类枯草杆菌类体壁降解酶对于附着胞分化不产生影响,对体壁降解也非完全必需的。与突变株附着胞分化频率显著降低相对应,其胞内环腺苷酸cAMP水平显著下降,而添加外源cAMP能够显著增加其附着胞分化频率,说明绿僵菌cAMP信号途径对于调控附着胞分化起着重要的作用。  相似文献   

13.
Aphidicolin inhibits DNA synthesis and nuclear division in spores of Anemia phyllitidis. In spite of blocked DNA replication, spores germinate under continuous dark conditions, if induced by addition of 5 × 10−5 grams per milliliter gibberellic acid. Differentiation of aphidicolin-treated prothallia indicate the existence of a prepattern in the dry spore which is realized independent of cell division during early events of spore germination.  相似文献   

14.
Lin L  Fang W  Liao X  Wang F  Wei D  St Leger RJ 《PloS one》2011,6(12):e28984
Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52) gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10), extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures). Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella) confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes.  相似文献   

15.
In this study, we determined the influences of temperature, wetness period and guava fruit age on infection caused by Colletotrichum gloeosporioides. Optimal temperatures in vitro for germination, appressoria formation and melanization were 22.7, 20.6 and 23°C, respectively. In vivo, the optimal temperatures for germination and appressoria formation were 22.5 and 23°C, respectively. Values for germination, appressoria formation and melanization were higher as the wetness period increased. There was no difference in conidial germination and appressorial formation on fruit of different ages. On the surface of 10‐, 35‐ and 60‐day‐old fruit, despite the high percentage of appressorial formation, there was no development of the penetration peg. Penetration pegs were only observed on the 85‐ and 110‐day‐old fruit. Thickness of the cuticle, size and architecture of epidermal and parenchymal cells, as well as the content of phenolic compounds changed as the fruit ripened.  相似文献   

16.
17.
The development of infection structures by the directly infecting soybean rust fungus of different artificial membranes was followed by light and scanning electron microscopy. On water agar uredospores developed germ tubes without appressoria. On dialysis membranes more than 80% of the uredospores formed appressoria. With low frequencies (1–7%) also primary hyphae and/or penetration hyphae were present. When cellulose nitrate membrane filters with pore diameters ≤ 0.2 μm were used, uredospores germinated but showed a strongly reduced appressoria formation. Membranes with pores ≥ 0.1 μm allowed a development of infection structures similar to that on dialysis membranes. In experiments with paraffin oil incorporated into collodion membranes more than 90% of the uredospores formed appressoria, about 50% of the appressoria developed hyphae. Ungerminated spores and germ tubes always contained 2 nuclei. In fully developed appressoria 4 nuclei were present. Compared with stomata entering rust fungi appressoria formation by Phakopsora pachyrhizi occurred more frequently and seemed to be less dependent on specific stimuli. Moreover, in most cases only few of the appressoria formed penetration or primary hyphae. The induction of these structures seemed to be dependent on further unknown stimuli.  相似文献   

18.
The histopathological changes of the second instar nymph of the mealybug Phenacoccus fraxinus infected with Lecanicillium lecanii strain 3.4505 were investigated using light, scanning and transmission electron microscopy. The results demonstrated that L. lecanii 3.4505 could infect P. fraxinus in a short period. At 24 h post-inoculation, the conidia of L. lecanii 3.4505 adhered to the indented gloves or intersegmental folds of the insect body surface. Subsequently, the germinated conidia produced germ-tubes, appressoria and extended hyphae, which tightly adhered to the cuticle. Penetration of cuticle could be achieved either by peg form appressoria or directly by hyphae. Also, the conidia and hyphae could secrete massive mucilages causing visible damage to the host cuticle. After 48 h, the body wall, tissues and organs, including cuticle, trachea, fat body, muscle, Malpighian tubules and nerve ganglion, were destroyed by ramification of hyphae as a result of infection. The endoplasmic reticulum hypertrophied and formed obvious fingerprint agglomerates, and the mitochondria swelled and deformed in the haemocytes. Finally, the mycelium fully occupied the entire haemocoel. The entire bodies were wrapped in a white mycelium, with the mycelium extending radically outward.  相似文献   

19.
《Experimental mycology》1992,16(4):261-267
Fluorescein-labeled anti-rabbit antiserum showed that a serine protease designated P32, produced by the nematophagous fungusVerticillium suchlasporium, is secreted during infection of nematode eggs. Increased fluorescence in appressoria of the fungus on eggshells of the plant parasitic nematodeHeterodera schachtii indicated the presence of P32 in these fungal structures. Appressoria are involved in host penetration and these results support a role for P32 in the pathogenicity of the fungus to nematode eggs. These findings agree with similar results of entomogenous fungi penetrating the insect cuticle.  相似文献   

20.
Summary The requirements for conidial germination and formation of infection structures of the grapevine parasites Uncinula necator were studied on different substrates and supports. Direct contact with water or agar surfaces frequently caused bursting of conidia or inhibited formation of infection structures. Normal germination and initial growth depended on the presence of a dry surface covering a liquid substrate which could be reached by the penetration pegs. The water necessary for germination must be provided by a high air humidity whose optimal value (99.8%) was determined using closed slide microchambers in which air humidity was controlled by salt solutions. Even 99.6% humidity led to significant growth reduction, while at higher values deleterious condensation droplets formed around the spores. If liquid substrates are covered with thin (0.5 m), waterproof polyacrylic membranes, germination appears normal. Formation of appressoria, successful penetration of the membrane by infection pegs and the development of functional haustoria indicate a lack of host specifity during the initial growth stage. although on water and on glucose media growth stopped after 1–2 weeks, this method seems to indicate a way to axenically culture this obligate parasite. The lack of host specificity at the level of host surface or tissue anatomy was corroborated by a successful culture of powdery mildew on grapevine callus.Dedicated to Professor Dr. Dr. hc. K. Esser on the occasion of his 65th anniversary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号