首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Klebsiella strain of human origin that was resistant to ampicillin, chloramphenicol, kanamycin, neomycin, streptomycin, and tetracycline was found to have all of these resistances associated with a R factor and a satellite molecular species of deoxyribonucleic acid (DNA) with an average buoyant density of 1.710 in cesium chloride gradients. There was no evidence of the existence of DNA with other buoyant densities. The strain bears two separable mutations for chloramphenicol resistance, both of which are associated with the R factor (KR9). Exposure of the Klebsiella strain to acridine derivatives or to ethidium bromide (which was more efficient) resulted in partial losses of resistance accompanied by the disappearance of the satellite DNA peak or shifts in its density. The R factor and its component genes were conjugally transmitted across generic boundaries and maintained in new hosts with different efficiencies. The basis of this difference lies not only in the efficiency of conjugal transfer but also in the stability of the components after transfer. All of the resistance genes and the resistance transfer factor were cotransducible by phage Plkc from Escherichia coli. Partially resistant strains could be reconstituted to full resistance or to a recombined pattern of partial resistance by conjugation with donors having complementary resistance patterns. This recombination serves as an efficient mechanism for rescuing superinfecting genes that are otherwise intracellularly excluded. KR9 is an fi+ type of R factor which in the natural state does not appear to be as repressed in conjugal transfer as other R factors.  相似文献   

2.
Filamentous phages have distinguished roles in conferring many pathogenicity and survival related features to Gram-negative bacteria including the medically important Vibrio cholerae, which carries factors such as cholera toxin on phages. A novel filamentous phage, designated VFJΦ, was isolated in this study from an ampicillin and kanamycin-resistant O139 serogroup V. cholerae strain ICDC-4470. The genome of VFJΦ is 8555 nucleotides long, including 12 predicted open reading frames (ORFs), which are organized in a modular structure. VFJΦ was found to be a mosaic of two groups of V. cholerae phages. A large part of the genome is highly similar to that of the fs2 phage, and the remaining 700 bp is homologous to VEJ and VCYΦ. This 700 bp region gave VFJΦ several characteristics that are not found in fs2 and other filamentous phages. In its native host ICDC-4470 and newly-infected strain N16961, VFJΦ was found to exist as a plasmid but did not integrate into the host chromosome. It showed a relatively wide host range but did not infect the classical biotype O1 V. cholerae strains. After infection, the host strains exhibited obvious inhibition of both growth and flagellum formation and had acquired a low level of ampicillin resistance and a high level of kanamycin resistance. The antibiotic resistances were not directly conferred to the hosts by phage-encoded genes and were not related to penicillinase. The discovery of VFJΦ updates our understanding of filamentous phages as well as the evolution and classification of V. cholerae filamentous phage, and the study provides new information on the interaction between phages and their host bacteria.  相似文献   

3.

Background

The study describes the Salmonella Rissen phage ?1 isolated from the ?1-sensitive Salmonella Rissen strain RW. The same phage was then used to select the resistant strain RR?1+, which can harbour or not ?1.

Results

Following this approach, we found that ?1, upon excision from RW cells with mitomycin, behaves as a temperate phage: lyses host cells and generates phage particles; instead, upon spontaneous excision from RR?1+ cells, it does not generate phage particles; causes loss of phage resistance; switches the O-antigen from the smooth to the rough phenotype, and favors the transition of Salmonella Rissen from the planktonic to the biofilm growth.The RW and RR?1+ strains differ by 10 genes; of these, only two (phosphomannomutase_1 and phosphomannomutase_2; both involved in the mannose synthesis pathway) display significant differences at the expression levels. This result suggests that phage resistance is associated with these two genes.

Conclusions

Phage ?1 displays the unusual property of behaving as template as well as lytic phage. This feature was used by the phage to modulate several phases of Salmonella Rissen lifestyle.
  相似文献   

4.
The pathogenesis of the disease caused by Streptococcus pneumoniae begins with colonization of the upper respiratory tract. Temperate phages have been identified in the genomes of up to 70% of clinical isolates. How these phages affect the bacterial host during colonization is unknown. Here, we examined a clinical isolate that carries a novel prophage element, designated Spn1, which was detected in both integrated and episomal forms. Surprisingly, both lytic and lysogenic Spn1 genes were expressed under routine growth conditions. Using a mouse model of asymptomatic colonization, we demonstrate that the Spn1 strain outcompeted the Spn1+ strain >70-fold. To determine if Spn1 causes a fitness defect through a trans-acting factor, we constructed an Spn1+ mutant that does not become an episome or express phage genes. This mutant competed equally with the Spn1 strain, indicating that expression of phage genes or phage lytic activity is required to confer this fitness defect. In vitro, we demonstrate that the presence of Spn1 correlated with a defect in LytA-mediated autolysis. Furthermore, the Spn1+ strain displayed increased chain length and resistance to lysis by penicillin compared to the Spn strain, indicating that Spn1 alters the cell wall physiology of its host strain. We posit that these changes in cell wall physiology allow for tolerance of phage gene products and are responsible for the relative defect of the Spn1+ strain during colonization. This study provides new insight into how bacteria and prophages interact and affect bacterial fitness in vivo.  相似文献   

5.
6.
Mutations from moderate (class I) to high (class III) ampicillin resistance in a male and a female strain of Escherichia coli K-12 have been found to be accompanied by surface alterations, first demonstrated as hindrance in the formation of mating pairs. These changes have now been studied with the ribonucleic acid phage MS2, and especially with the "female-specific" phage phiW. Several class III mutations in male and female strains were found to make the cells susceptible to phage phiW and to reduce their abilities to form mating pairs. Spontaneous phage phiW-resistant mutants isolated from class III strains were found also to have acquired changes in ampicillin resistance and ability to form mating pairs. One mutant had reverted to parental class I type in all three properties. Lipopolysaccharides (LPS) prepared from phiW-sensitive class III strains inactivated the phage in vitro, whereas LPS from phage-resistant strains had no effect. Carbohydrate analyses of LPS preparations showed that two class III mutants, compared to their parental strains, had lost significant parts of the rhamnose, galactose, and glucose from the LPS. One of the phage phiW-resistant mutants showed a partial restoration of its carbohydrate composition. Other phiW-resistant mutants showed, instead, further losses of carbohydrates in their LPS. It is suggested that genes exist which simultaneously mediate a female-specific mating site, ampicillin resistance, and the receptors for phage phiW.  相似文献   

7.
An ampicillin resistance plasmid carrying the cloned repressor gene cII of the L phage (Salmonella lyphimurium) was conducted by F’lac into an F- recipient. Two types of plaamids were isolated from Apr transconjugants. The majority of plasmids were dimers with one copy of Tn1000 inserted, the minority being monomers with one copy of Tn1000. This proportion remained unaltered when we used the F’lac strain transformed with a monomeric form of the recombinant plasmid as a donor. An extensive oligomerization of pBR322-originating plasmids was proved in the presence of F’lac; its presumable relationship to transposition-related processes is suggested.  相似文献   

8.
As natural killers of bacteria, bacteriophages have forced bacteria to develop a variety of defence mechanisms. The alteration of host receptors is one of the most common bacterial defence strategies against phage infection, which completely blocks phage attachment but comes at a potential fitness cost to the bacteria. Here, we report the cost‐free, transient emergence of phage resistance in Salmonella enterica subspecies enterica serovar Typhimurium through a phase‐variable modification of the O‐antigen. Phage SPC35 typically requires BtuB as a host receptor but also uses the Salmonella O12‐antigen as an adsorption‐assisting apparatus for the successful infection of S. Typhimurium. The α‐1,4‐glucosylation of galactose residues in the O12‐antigen by phase variably expressed O‐antigen glucosylating genes, designated the LT 2 gtrABC1 cluster, blocks the adsorption‐assisting function of the O12‐antigen. Consequently, it confers transient SPC35 resistance to Salmonella without any mutations to the btuB gene. This temporal switch‐off of phage adsorption through phase‐variable antigenic modification may be widespread among Gram‐negative bacteria‐phage systems.  相似文献   

9.
Epidemic strain Salmonella typhimurium DT104 is characterized by various multiresistance patterns. At least some of the resistance genes are organized as integrons. Resistance genes of DT104 isolates can be efficiently transduced by P22-like phage ES18 and by phage PDT17 which is released by all DT104 isolates so far analyzed. Cotransduction tests demonstrate that the resistance genes, although not organized in a unique integron, are tightly clustered on the Salmonella chromosome. The spread of resistance genes in this strain by generalized transduction is discussed.  相似文献   

10.
The DNA of wild-type Streptomyces lividans 66 is degraded during electrophoresis in buffers containing traces of ferrous iron. S. lividans ZX1, a mutant selected for resistance to DNA degradation, simuiltaneously became sensitive to φHAU3, a wide-host-range temperate bacteriophage. A DNA fragment conferring φHAU3 resistance was cloned; it contains a phage resistance gene whose deduced amino acid sequence is similar to the phage λ Ea59 endonuclease. The S. lividansφHAU3 resistance does not seem to be a classical restriction-modification system, because no host-modified phages able to propagate on the wild-type strain could be isolated. The cloned fragment did not make the host DNA prone to degradation during electrophoresis, indicating that the two phenotypes are controlled by different genes which were deleted together from the chromosome of ZX1.  相似文献   

11.
Summary This study presents plasmid systems that utilize regulatory signals of bacteriophage Lambda to accomplish regulated expression of cloned genes in an A. nidulans R2 derivative strain. An operator-promoter region and the temperature-sensitive repressor gene cI857 of bacteriophage Lambda were employed. Linked to a cyanobacterial replicon, the plasmid vectors efficiently transformed Anacystis and were stably maintained within this host. The cat structural gene, encoding chloramphenicol acetyltransferase, was used to demonstrate that expression can be regulated by temperature shift. We have identified in extracts from the vector bearing Anacystis, a protein similar in size and immunology to the Lambda repressor. The systems described should allow controlled expression of adventitious genes in the cyanobacterial host.Abbreviations APr ampicillin resistance - Cmr chloramphenicol resistance - CmActase chloramphenicol acetyltransferase - Kmr Kanamycine resistance - [ ] indicates plasmid carrier state  相似文献   

12.
The aim of this study was to assess the impact of three ampicillin dosage regimens on ampicillin resistance among Enterobacteriaceae recovered from swine feces by use of phenotypic and genotypic approaches. Phenotypically, ampicillin resistance was determined from the percentage of resistant Enterobacteriaceae and MICs of Escherichia coli isolates. The pool of ampicillin resistance genes was also monitored by quantification of blaTEM genes, which code for the most frequently produced β-lactamases in gram-negative bacteria, using a newly developed real-time PCR assay. Ampicillin was administered intramuscularly and orally to fed or fasted pigs for 7 days at 20 mg/kg of body weight. The average percentage of resistant Enterobacteriaceae before treatment was between 2.5% and 12%, and blaTEM gene quantities were below 107 copies/g of feces. By days 4 and 7, the percentage of resistant Enterobacteriaceae exceeded 50% in all treated groups, with some highly resistant strains (MIC of >256 μg/ml). In the control group, blaTEM gene quantities fluctuated between 104 and 106 copies/g of feces, whereas they fluctuated between 106 to 108 and 107 to 109 copies/g of feces for the intramuscular and oral routes, respectively. Whereas phenotypic evaluations did not discriminate among the three ampicillin dosage regimens, blaTEM gene quantification was able to differentiate between the effects of two routes of ampicillin administration. Our results suggest that fecal blaTEM gene quantification provides a sensitive tool to evaluate the impact of ampicillin administration on the selection of ampicillin resistance in the digestive microflora and its dissemination in the environment.  相似文献   

13.
Thirteen Lactobacillus strains isolated from the gastrointestinal microbiome of people from the territory of the former Soviet Union have been studied for resistance to 15 antibiotics of different nature, namely, penicillins, aminoglycosides, macrolides, lincosamides, tetracyclines, chloramphenicol, and rifampicin. The strains included four strains of L. plantarum, four of L. helveticus, three of L. casei/paracasei, one of L. rhamnosus, and one of L. fermentum. All strains showed relative sensitivity to ampicillin, chloramphenicol, rifampicin, roxithromycin, erythromycin, and azithromycin, while none of them were sensitive to all tested antibiotics. L. plantarum strains had the broadest resistance spectra: one strain was resistant to tetracycline and three aminoglycosides and three strains were resistant to tetracycline and five aminoglycosides; one strain demonstrated high resistance to clindamycin and two strains to lincomycin. At the same time, two L. plantarum strains demonstrated resistance to benzylpenicillin coupled with sensitivity to ampicillin, another β-lactam antibiotic. Such resistance was clearly not related to the β-lactamase activity and could be explained by a specific mutation in one of the penicillin-binding proteins of the cell wall. Strains of L. helveticus, L. casei/paracasei, L. rhamnosus, and L. fermentum exhibited cross resistance to two to five different aminoglycosides. A PCR test of the resistance determinants for the widely clinically used antibiotics, tetracycline, chloramphenicol, and erythromycin revealed the presence of the tetM gene of conjugative transposon in L. casei/paracasei and two L. helveticus strains. Nucleotide sequence analysis of the amplified tetM fragments demonstrated their high homology with the tetM genes of Enterococcus faecalis and Streptococcus pneumoniae. The strains carrying tetM were tested for the genes of replication and conjugative transfer of plasmids in lactic acid bacteria. The results indicated that these strains contain genes identical or highly homologous to the rep and trsK genes of the plca36 plasmid and rep gene of the pLH1 and pLJ1 plasmids of lactic acid bacteria. The tetM gene is probably not expressed in strains sensitive to the corresponding antibiotic. However, the investigated lactobacilli cannot be directly used as probiotics, as they may serve as a source of genes for antibiotic resistance in the human microbiome.  相似文献   

14.
Isogenic knockout mutants of Escherichia coli deficient in components of the glutathione and thioredoxin redox systems and growing at various temperatures (20–46°C) exhibited considerable differences in growth rate and survival, as well as in expression of the antioxidant genes. In the parental strain E. coli BW25113 (wt) treated with ciprofloxacin, ampicillin, or streptomycin, dependence of survival on growth temperature was a V-shaped curve with the maximum sensitivity within the range corresponding to high growth rates (40–44°C). Significant inverse correlation was observed between log CFU at different temperatures and specific growth rate prior to antibiotic addition. This applied to most of the mutants, which exhibited higher resistance to the three antibiotics tested at nonoptimal temperatures (20 and 46°C) than at 37 and 40°C. No correlation was found between resistance to stress and antibiotics and expression of the antioxidant genes. The role of global regulators ppGpp and σs in E. coli resistance to antibiotics and nonoptimal temperatures was shown.  相似文献   

15.
Eight of 40 strains of Streptococcus lactis and S. lactis subsp. diacetylactis were able to conjugally transfer a degree of phage insensitivity to Streptococcus lactis LM0230. Transconjugants from one donor strain, S. lactis subsp. diacetylactis 4942, contained a 106-kilobase (kb) cointegrate plasmid, pAJ1106. The plasmid was conjugative (Tra+) and conferred phage insensitivity (Hsp) and lactose-fermenting ability (Lac) in S. lactis and Streptococcus cremoris transconjugants. The phage resistance mechanism was effective against prolate- and small isometric-headed phages at 30°C. In S. lactis transconjugants, the phage resistance mechanism was considerably weakened at elevated temperatures. A series of deletion plasmids was isolated from transconjugants in S. cremoris 4854. Deletion plasmids were pAJ2074 (74 kb), Lac+, Hsp+, Tra+; pAJ3060 (60 kb), Lac+, Hsp+; and pAJ4013 (13 kb), Lac+. These plasmids should facilitate mapping Hsp and tra genes, with the aim of constructing phage-insensitive strains useful to the dairy industry.  相似文献   

16.
Listeria monocytogenes is a main etiological factor of listeriosis, spread mainly by food products. In recent years, an increasing number of patients with listeriosis and an augmentation in L. monocytogenes antibiotic resistance, e.g. to penicillin and ampicillin, has been reported. The aim of the study was to characterise the L. monocytogenes strains isolated from fish-processed food products. Species identification, based on the multiplex-PCR reaction, was performed, and the genetic similarity of the isolates was analysed with the RAPD technique. The strains, in the form of planktonic cells and a biofilm, were subjected to drug-susceptibility analysis, and the effect of disinfectants on the bacillus cells was evaluated. All of the analysed strains were of the Listeria monocytogenes species. Three genetically distant strains were detected, i.e. Lm I, Lm II and Lm III. Approximately 66.6% penicillin-resistant and 66.6% cotrimoxazole-resistant strains were found. No erythromycin-resistant strain was detected. The Lm II strain was simultaneously resistant to four antibiotics, i.e. penicillin, ampicillin, meropenem and cotrimoxazole. The strongest biofilm was formed on aluminium foil and the weakest on rubber. The tested disinfectant antibiofilm effectiveness was related to the type of surface. The most effective agent was paracetic acid and hydrogen peroxide (elimination rate 5.10–6.62 log CFU?×?cm?2 and 5.70–7.39 log CFU?×?cm?2 after 1- and 5-min exposure, respectively) and the least—sodium hydroxide (elimination rate 0.52–1.20 log CFU?×?cm?2 and 0.98–1.81 log CFU?×?cm?2 after 1- and 5-min exposure, respectively). Further studies on a greater number of L. monocytogenes strains are recommended.  相似文献   

17.
Salmonella enterica is among the principal etiological agents of food-borne illness in humans. Increasing antimicrobial resistance in S. enterica is a cause for worldwide concern. There is concern at present in relation to the increasing incidence of human infection with antimicrobial agent-resistant strains of S. enterica serotype Typhimurium, in particular of phage type DT104. Integrons appear to play an important role in the dissemination of antimicrobial resistance genes in many Enterobacteriaceae including S. enterica. In this study the antimicrobial susceptibilities and phage types of 74 randomly collected strains of S. enterica serotype Typhimurium from the Cork region of southern Ireland, obtained from human, animal (clinical), and food sources, were determined. Each strain was examined for integrons and typed by DNA amplification fingerprinting (DAF). Phage type DT104 predominated (n = 48). Phage types DT104b (n = 3), -193 (n = 9), -195 (n = 6), -208 (n = 3), -204a (n = 2), PT U302 (n = 1), and two nontypeable strains accounted for the remainder. All S. enterica serotype Typhimurium DT104 strains were resistant to ampicillin, chloramphenicol, streptomycin, Sulfonamide Duplex, and tetracycline, and one strain was additionally resistant to trimethoprim. All DT104 strains but one were of a uniform DAF type (designated DAF-I) and showed a uniform pattern of integrons (designated IP-I). The DT104b and PT U302 strains also exhibited the same resistance phenotype, and both had the DAF-I and IP-I patterns. The DAF-I pattern was also observed in a single DT193 strain in which no integrons were detectable. Greater diversity of antibiograms and DAF and IP patterns among non-DT104 phage types was observed. These data indicate a remarkable degree of homogeneity at a molecular level among contemporary isolates of S. enterica serotype Typhimurium DT104 from animal, human, and food sources in this region.  相似文献   

18.
【背景】在鹌鹑养殖过程中,抗菌药物和消毒剂的不规范使用加剧了耐药菌株在动物、场所和食品之间的相互传播,因此,掌握致病菌株在养殖动物中的耐药状况至关重要。【目的】检测北京周边地区鹌鹑蛋源致病菌株的耐药特征和耐药基因的流行情况。【方法】在天津市武清区部分鹌鹑养殖场采集鹌鹑泄殖腔粪便、鹌鹑蛋表、养殖环境和鹌鹑饮水的样品,通过细菌分离培养、菌落形态观察、染色镜检、生化鉴定、血清分型、沙门氏菌inv A基因序列测定等方法对分离菌株进行鉴定。同时进行小鼠攻毒试验,测定小鼠半数致死量(median lethal dose, LD50)。再通过药敏试验和PCR方法对分离菌的耐药表型、耐药基因及毒力基因进行检测。【结果】分离菌株菌落颜色、镜检形态和生化试验结果符合沙门氏菌特性,沙门氏菌inv A基因序列测定与鼠伤寒沙门氏菌参考株相似度为99.44%,鉴定为鼠伤寒沙门氏菌,血清型为1,4,[5],[12]:i:l,2。该菌株对小鼠有致病作用,小鼠LD50为2.10×107 CFU/mL;药敏试验结果显示该菌株对氨苄西林、阿莫西林/克拉维酸、头孢噻呋、链霉素、磺胺甲啞唑、磺胺异啞唑、诺氟沙星、环丙沙星表现耐...  相似文献   

19.
The genes for a Class II restriction-modification system (HhaII) from Haemophilus haemolyticus have been cloned in Escherichia coli. The vector used for cloning was plasmid pBR322 which confers resistance to tetracycline and ampicillin and contains a single endonuclease R·PstI site, (5′)C-T-G-C-A-G (3′), in the ampicillin gene. The procedure developed by Bolivar et al. (1977) was used to form DNA recombinants. H. haemolyticus DNA was cleaved with PstI endonuclease and poly(dC) extensions were added to the 3′-OH termini using terminal deoxynucleotidyl transferase. Circular pBR322 DNA was cleaved to linear molecules with PstI endonuclease and poly(dG) extensions were added to the 3′-OH termini, thus regenating the PstI cleavage site sequence. Recombinant molecules, formed by annealing the two DNAs, were used to transfect a restriction and modification-deficient strain of E. coli (HB101 r?m?recA). Tetracycline-resistant clones were tested for acquisition of restriction phenotype (as measured by growth on plates seeded with phage λcI·O). A single phage-resistant clone was found. The recombinant plasmid, pDI10, isolated from this clone, had acquired 3 kilobases of additional DNA which could be excised with PstI endonuclease. In addition to the restriction function, cells carrying the plasmid expressed the HhaII modification function. Both activities have been partially purified by single-stranded DNA-agarose chromatography. The cloned HhaII restriction activity yields cleavage patterns identical to HinfI. A restriction map of the cloned DNA segment is presented.  相似文献   

20.
Resistance to methicillin was transduced by phage 80 or 53 from two naturally occurring methicillin-resistant strains of Staphylococcus aureus to methicillin-susceptible recipient strains at frequencies of 10−7 to 10−9. Ultraviolet irradiation of transducing phage and posttransductional incubation at 30 C were essential for useful frequencies of transduction. Effectiveness as a recipient for this transduction was highly specific. Strain NCTC 8325 (PS47) in its native state was an ineffective recipient but became effective after it had received by transduction one of several penicillinase plasmids. This acquired effectiveness was retained in most cases after elimination of the plasmid by ethidium bromide treatment. Like the donor strain, the progeny were heterogeneous in the degree of their resistance to methicillin, which was expressed by a higher proportion of cells as the temperature of incubation was lowered from 37 to 30 C. Separate transductants varied widely in the degree of resistance acquired by transduction. Methicillin resistance was stable in the donor and transductant strains. We favored the interpretation that methicillin resistance in our strains was determined by a single chromosomal gene, although the possibility that it was determined by two or more closely linked genes could not be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号