首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
rab3A is a small neuronal GTP-binding protein specifically localized to synaptic vesicles. Membrane-bound rab3A behaves like an intrinsic membrane protein in vitro, but reversibly dissociates from synaptic vesicles after exocytosis in vivo. Here we demonstrate that rab3A is attached to synaptic vesicle membranes by a carboxy-terminal Cys-X-Cys sequence that is posttranslationally modified. This modification is inhibited by compactin in a mevalonate-dependent manner, suggesting that the Cys-X-Cys sequence represents a novel polyisoprenylation sequence. Isolation of a rab3 homolog from D. melanogaster reveals high evolutionary conservation of rab3A, including its carboxy-terminal Cys-X-Cys sequence. The posttranslational modifications of soluble and membrane-bound rab3A are biochemically different, but both require the carboxy-terminal Cys-X-Cys sequence and are faithfully reproduced in nonneuronal cells. Our results suggest that the carboxy-terminal Cys-X-Cys sequence of rab3A is polyisoprenylated and is used as its regulatable membrane anchor. Furthermore, the hydrophobic modification of rab3A and its correct intracellular targeting to synaptic vesicles are independent, presumably consecutive events.  相似文献   

2.
Synaptic vesicle fusion is catalyzed by assembly of synaptic SNARE complexes, and is regulated by the synaptic vesicle GTP-binding protein Rab3 that binds to RIM and to rabphilin. RIM is a known physiological regulator of fusion, but the role of rabphilin remains obscure. We now show that rabphilin regulates recovery of synaptic vesicles from use-dependent depression, probably by a direct interaction with the SNARE protein SNAP-25. Deletion of rabphilin dramatically accelerates recovery of depressed synaptic responses; this phenotype is rescued by viral expression of wild-type rabphilin, but not of mutant rabphilin lacking the second rabphilin C2 domain that binds to SNAP-25. Moreover, deletion of rabphilin also increases the size of synaptic responses in synapses lacking the vesicular SNARE protein synaptobrevin in which synaptic responses are severely depressed. Our data suggest that binding of rabphilin to SNAP-25 regulates exocytosis of synaptic vesicles after the readily releasable pool has either been physiologically exhausted by use-dependent depression, or has been artificially depleted by deletion of synaptobrevin.  相似文献   

3.
Rabphilin is a membrane trafficking protein on secretory vesicles that consists of an N-terminal Rab-binding domain and C-terminal tandem C2 domains. The N-terminal part of rabphilin has recently been shown to function as an effector domain for both Rab27A and Rab3A in PC12 cells (Fukuda, M., Kanno, E., and Yamamoto, A. (2004) J. Biol. Chem. 279, 13065-13075), but the function of the C2 domains of rabphilin during secretory vesicle exocytosis is largely unknown. In this study we investigated the interaction between rabphilin and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors, VAMP-2/synaptobrevin-2, syntaxin IA, and SNAP-25) and SNARE-associated proteins (Munc18-1 and Munc13-1) and found that the C2B domain of rabphilin, but not of other Rab27A-binding proteins with tandem C2 domains (i.e. Slp1-5), directly interacts with a plasma membrane protein, SNAP-25. The interaction between rabphilin and SNAP-25 occurs even in the absence of Ca(2+) (EC(50) = 0.817 microm SNAP-25), but 0.5 mm Ca(2+) increases the affinity for SNAP-25 2-fold (EC(50) = 0.405 microm SNAP-25) without changing the B(max) value (1.06 mol of SNAP-25/mol of rabphilin). Furthermore, vesicle dynamics were imaged by total internal reflection fluorescence microscopy in a single PC12 cell expressing a lumen-targeted pH-insensitive yellow fluorescent protein (Venus), neuropeptide Y-Venus. Expression of the wild-type rabphilin in PC12 cells significantly increased the number of docked vesicles to the plasma membrane without altering the kinetics of individual secretory events, whereas expression of the mutant rabphilin lacking the C2B domain, rabphilin-DeltaC2B, decreased the number of docked vesicle or fusing at the plasma membrane. These findings suggest that rabphilin is involved in the docking step of regulated exocytosis in PC12 cells, possibly through interaction between the C2B domain and SNAP-25.  相似文献   

4.
The rab family of GTP-binding proteins regulates membrane transport between intracellular compartments. The major rab protein in brain, rab3A, associates with synaptic vesicles. However, rab3A was shown to regulate the fusion probability of synaptic vesicles, rather than their transport and docking. We tested whether rab3A has a transport function by analyzing synaptic vesicle distribution and exocytosis in rab3A null-mutant mice. Rab3A deletion did not affect the number of vesicles and their distribution in resting nerve terminals. The secretion response upon a single depolarization was also unaffected. In normal mice, a depolarization pulse in the presence of Ca(2+) induces an accumulation of vesicles close to and docked at the active zone (recruitment). Rab3A deletion completely abolished this activity-dependent recruitment, without affecting the total number of vesicles. Concomitantly, the secretion response in the rab3A-deficient terminals recovered slowly and incompletely after exhaustive stimulation, and the replenishment of docked vesicles after exhaustive stimulation was also impaired in the absence of rab3A. These data indicate that rab3A has a function upstream of vesicle fusion in the activity-dependent transport of synaptic vesicles to and their docking at the active zone.  相似文献   

5.
rab3A is a low molecular weight (LMW) GTP-binding protein specifically expressed in brain and localized to synaptic vesicles. rab3A has been proposed to play a role in neurotransmitter release by regulating membrane flow in the nerve terminal. In an attempt to define other LMW GTP-binding proteins that may regulate neurotransmitter release, seven cDNA clones encoding new members of the rab family of LMW GTP-binding proteins were isolated from a rat brain cDNA library. The rab proteins contain the four conserved structural domains essential for GTP binding in addition to domains required for membrane localization and effector protein interactions. One protein, rab16, is closely related to members of the rab3 subfamily, whereas two others are assigned as the rat homologs of canine rab8 and rab10. Four additional clones, rab12, rab13, rab14, and rab15, revealed unique sequences and are new members of the rab family of LMW GTP-binding proteins. The patterns of expression of rab15 and rab3A closely overlap but differ from that observed for all other known LMW GTP-binding proteins. This data suggests that rab15 may act in concert with rab3A in regulating aspects of synaptic vesicle membrane flow within the nerve terminal.  相似文献   

6.
Rabphilin is generally thought to be involved in the regulation of secretory vesicle exocytosis in neurons and neuroendocrine cells, and it has recently been hypothesized that the C2B domain of rabphilin promotes the docking of dense-core vesicles to the plasma membrane through simultaneous interaction with a vesicle protein, Rab3A/27A, and a plasma membrane protein, SNAP-25 (synaptosome-associated protein of 25 kDa). However, the physiological significance of the rabphilin-SNAP-25 interaction in the vesicle-docking step has never been elucidated. In this study we demonstrated by a mutation analysis that the polybasic sequence (587 KKAKHKTQIKKK 598) in the C2B domain of rabphilin is required for SNAP-25 binding, and that the Asp residues in the Ca(2+)-binding loop 3 (D628 and D630) of the C2B domain are not required. We also investigated the effect of Lys-->Gln (KQ) mutations in the polybasic sequence of the C2B domain on vesicle dynamics by total internal reflection fluorescence microscopy in individual PC12 cells. A rabphilin(KQ) mutant that completely lacks SNAP-25-binding activity significantly decreased the number of plasma-membrane-docked vesicles and strongly inhibited high-KCl-induced dense-core vesicle exocytosis. These results indicate that the polybasic sequence in the C2B domain functions as an effector domain for SNAP-25 and controls the number of 'releasable' vesicles docked to the plasma membrane.  相似文献   

7.
Rab3A is a small GTPase implicated in the docking of secretory vesicles in neuroendocrine cells. A putative downstream target for Rab3A, rabphilin-3A, is located exclusively on secretory vesicle membranes. It contains near its C terminus two C2 domains that bind Ca2+ in a phospholipid-dependent manner and an N-terminal, Rab3A-binding domain that includes a Cys-rich region. We have determined that the Cys-rich domain binds two Zn2+ ions and is necessary but not sufficient for efficient binding of rabphilin to Rab3A. A minimal Rab3A-binding domain consists of residues 45 to 170 of rabphilin. HA1-tagged Rab3A and a green fluorescent protein (GFP)-rabphilin fusion were used to examine the roles of Rab3A and of rabphilin domains in the subcellular localization of these proteins. A Rab3A mutant (T54A) that does not bind rabphifin in vitro colocalized with the GFP-rabphilin fusion, indicating that Rab3A targeting is independent of its interaction with rabphilin. Deletion of the C2 domains of rabphilin reduced membrane association of GFP-rabphilin but did not cause mistargeting of the membrane-associated fraction. However, disruption of the zinc fingers, which drastically reduced Rab3A binding, did not reduce membrane association. These results suggest that the C2 domains are required for efficient membrane attachment of rabphilin in PC12 cells and that Rab3A binding may act to target the protein to the correct membrane.  相似文献   

8.
Rab3A is a small GTP-binding protein highly concentrated on synaptic vesicles. Like other small GTP-binding proteins it is thought to cycle between a soluble and a membrane-associated state. To determine at which stage of the life cycle of synaptic vesicles rab3A is associated with their membranes, the localization of the protein in neurons and neuroendocrine cells at different developmental and functional stages was investigated. In all cases, rab3A was colocalized with synaptic vesicle markers at the cell periphery, but was absent from the Golgi area, suggesting that rab3A associates with vesicles distally to the Golgi complex and dissociates from vesicle membranes before they recycle to this region. Immunofluorescence experiments carried out on frog motor end plates demonstrated that massive exocytosis of synaptic vesicles is accompanied by a translocation of rab3A to the cell surface. The selective localization of rab3A on synaptic vesicles at stages preceding their fusion with the plasmalemma suggests that the protein is part of a regulatory machinery that is assembled onto the vesicles in preparation for exocytosis.  相似文献   

9.
Isotope effects in the study of enzymatic phosphoryl transfer reactions   总被引:2,自引:0,他引:2  
Hengge AC 《FEBS letters》2001,497(2-3):99-102
CASK, a member of the membrane-associated guanylate kinase (MAGUK) superfamily, binds to the carboxyl-terminus of beta-neurexins on the intracellular side of the presynaptic membrane. The guanylate kinase-like (GUK) domains of MAGUKs lack kinase activities, but might be important for mediating specific protein-protein interaction. By a yeast two-hybrid approach, we identified an interaction between the GUK domain of CASK and the C2B domain of rabphilin3a, a presynaptic protein involved in synaptic vesicle exocytosis. The interaction was confirmed by in vitro GST pull-down and co-immunoprecipitation assays. It was proposed that presynaptic vesicles might be guided to the vicinity of points of exocytosis defined by beta-neurexins via the interaction between rabphilin3a-CASK-beta-neurexins.  相似文献   

10.
Potential interactions between membrane components of rat brain synaptic vesicles were analyzed by detergent solubilization followed by size fractionation or immunoprecipitation. The behavior of six synaptic vesicle membrane proteins as well as a plasma membrane protein was monitored by Western blotting. Solubilization of synaptic vesicle membranes in CHAPS resulted in the recovery of a large protein complex that included SV2, p65, p38, vesicle-associated membrane protein, and the vacuolar proton pump. Solubilization in octylglucoside resulted in the preservation of interactions between SV2, p38, and rab3A, while solubilization of synaptic vesicles with Triton X-100 resulted in two predominant interactions, one involving p65 and SV2, and the other involving p38 and vesicle-associated membrane protein. The multicomponent complex preserved with CHAPS solubilization was partially reconstituted following octylglucoside solubilization and subsequent dialysis against CHAPS. Reduction of the CHAPS concentration by gel filtration chromatography resulted in increased recovery of the multicomponent complex. Examination of the large complex isolated from CHAPS-solubilized vesicles by negative stain EM revealed structures with multiple globular domains, some of which were specifically labeled with gold-conjugated antibodies directed against p65 and SV2. The protein interactions defined in this report are likely to underlie aspects of neurotransmitter secretion, membrane traffic, and the spatial organization of vesicles within the nerve terminal.  相似文献   

11.
Rabphilin is a synaptic vesicle-associated protein proposed to play a role in regulating neurotransmitter release. Here we report the isolation and identification of a novel protein complex containing rabphilin, annexin A4 and synaptotagmin 1. We show that the rabphilin C2B domain interacts directly with the N-terminus of annexin A4 and mediates the co-complexing of these two proteins in PC12 cells. Analyzing the cellular localisation of these co-complexing proteins we find that annexin A4 is located on synaptic membranes and co-localises with rabphilin at the plasma membrane in PC12 cells. Given that rabphilin and synaptotagmin are synaptic vesicle proteins involved in neurotransmitter release, the identification of this complex suggests that annexin A4 may play a role in synaptic exocytosis.  相似文献   

12.
The recycling of synaptic vesicles in nerve terminals is thought to involve clathrin-coated vesicles. However, the properties of nerve terminal coated vesicles have not been characterized. Starting from a preparation of purified nerve terminals obtained from rat brain, we isolated clathrin-coated vesicles by a series of differential and density gradient centrifugation steps. The enrichment of coated vesicles during fractionation was monitored by EM. The final fraction consisted of greater than 90% of coated vesicles, with only negligible contamination by synaptic vesicles. Control experiments revealed that the contribution by coated vesicles derived from the axo-dendritic region or from nonneuronal cells is minimal. The membrane composition of nerve terminal-derived coated vesicles was very similar to that of synaptic vesicles, containing the membrane proteins synaptophysin, synaptotagmin, p29, synaptobrevin and the 116-kD subunit of the vacuolar proton pump, in similar stoichiometric ratios. The small GTP-binding protein rab3A was absent, probably reflecting its dissociation from synaptic vesicles during endocytosis. Immunogold EM revealed that virtually all coated vesicles carried synaptic vesicle proteins, demonstrating that the contribution by coated vesicles derived from other membrane traffic pathways is negligible. Coated vesicles isolated from the whole brain exhibited a similar composition, most of them carrying synaptic vesicle proteins. This indicates that in nervous tissue, coated vesicles function predominantly in the synaptic vesicle pathway. Nerve terminal-derived coated vesicles contained AP-2 adaptor complexes, which is in agreement with their plasmalemmal origin. Furthermore, the neuron-specific coat proteins AP 180 and auxilin, as well as the alpha a1 and alpha c1-adaptins, were enriched in this fraction, suggesting a function for these coat proteins in synaptic vesicle recycling.  相似文献   

13.
Synaptic vesicles are key organelles in neurotransmission. Their functions are governed by a unique set of integral and peripherally associated proteins. To obtain a complete protein inventory, we immunoisolated synaptic vesicles from rat brain to high purity and performed a gel-based analysis of the synaptic vesicle proteome. Since the high hydrophobicity of integral membrane proteins hampers their resolution by gel electrophoretic techniques, we applied in parallel three different gel electrophoretic methods for protein separation prior to MS. Synaptic vesicle proteins were subjected to either 1-D SDS-PAGE along with nano-LC ESI-MS/MS or to the 2-D gel electrophoretic techniques benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE, and double SDS (dSDS)-PAGE in combination with MALDI-TOF-MS. We demonstrate that the combination of all three methods provides a comprehensive survey of the proteinaceous inventory of the synaptic vesicle membrane compartment. The identified synaptic vesicle proteins include transporters, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), synapsins, rab and rab-interacting proteins, additional guanine nucleotide triphosphate (GTP) binding proteins, cytoskeletal proteins, and proteins modulating synaptic vesicle exo- and endocytosis. In addition, we identified novel proteins of unknown function. Our results demonstrate that the parallel application of three different gel-based approaches in combination with mass spectrometry permits a comprehensive analysis of the synaptic vesicle proteome that is considerably more complex than previously anticipated.  相似文献   

14.
Rabphilin and Noc2 were originally described as Rab3A effector proteins involved in the regulation of secretory vesicle exocytosis, however, recently both proteins have been shown to bind Rab27A in vitro in preference to Rab3A (Fukuda, M. (2003) J. Biol. Chem. 278, 15373-15380), suggesting that Rab3A is not their major ligand in vivo. In the present study we showed by means of deletion and mutation analyses that rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A, not with Rab3A, in PC12 cells. Rab3A binding-defective mutants of rabphilin(E50A) and Noc2(E51A) were still localized in the distal portion of the neurites (where dense-core vesicles had accumulated) in nerve growth factor-differentiated PC12 cells, the same as the wild-type proteins, whereas Rab27A binding-defective mutants of rabphilin(E50A/I54A) and Noc2(E51A/I55A) were present throughout the cytosol. We further showed that expression of the wild-type or the E50A mutant of rabphilin-RBD, but not the E50A/I54A mutant of rabphilin-RBD, significantly inhibited high KCl-dependent neuropeptide Y secretion by PC12 cells. We also found that rabphilin and its binding partner, Rab27 have been highly conserved during evolution (from nematoda to humans) and that Caenorhabditis elegans and Drosophila rabphilin (ce/dm-rabphilin) specifically interact with ce/dm-Rab27, but not with ce/dm-Rab3 or ce/dm-Rab8, suggesting that rabphilin functions as a Rab27 effector across phylogeny. Based on these findings, we propose that the N-terminal Rab binding domain of rabphilin and Noc2 be referred to as "RBD27 (Rab binding domain for Rab27)", the same as the synaptotagmin-like protein homology domain (SHD) of Slac2-a/melanophilin.  相似文献   

15.
《The Journal of cell biology》1990,111(5):2041-2052
We have developed procedures for detecting synaptic vesicle-binding proteins by using glutaraldehyde-fixed or native vesicle fractions as absorbent matrices. Both adsorbents identify a prominent synaptic vesicle-binding protein of 36 kD in rat brain synaptosomes and mouse brain primary cultures. The binding of this protein to synaptic vesicles is competed by synaptophysin, a major integral membrane protein of synaptic vesicles, with half-maximal inhibition seen between 10(-8) and 10(-7) M synaptophysin. Because of its affinity for synaptophysin, we named the 36-kD synaptic vesicle-binding protein physophilin (psi nu sigma alpha, greek = bubble, vesicle; psi iota lambda os, greek = friend). Physophilin exhibits an isoelectric point of approximately 7.8, a Stokes radius of 6.6 nm, and an apparent sedimentation coefficient of 5.6 S, pointing to an oligomeric structure of this protein. It is present in synaptic plasma membranes prepared from synaptosomes but not in synaptic vesicles. In solubilization experiments, physophilin behaves as an integral membrane protein. Thus, a putative synaptic plasma membrane protein exhibits a specific interaction with one of the major membrane proteins of synaptic vesicles. This interaction may play a role in docking and/or fusion of synaptic vesicles to the presynaptic plasma membrane.  相似文献   

16.
Synaptic neurotransmitter release is restricted to active zones, where the processes of synaptic vesicle tethering, priming to fusion competence, and Ca2+-triggered fusion are taking place in a highly coordinated manner. We show that the active zone components Munc13-1, an essential vesicle priming protein, and RIM1, a Rab3 effector with a putative role in vesicle tethering, interact functionally. Disruption of this interaction causes a loss of fusion-competent synaptic vesicles, creating a phenocopy of Munc13-1-deficient neurons. RIM1 binding and vesicle priming are mediated by two distinct structural modules of Munc13-1. The Munc13-1/RIM1 interaction may create a functional link between synaptic vesicle tethering and priming, or it may regulate the priming reaction itself, thereby determining the number of fusion-competent vesicles.  相似文献   

17.
S D Conner  G M Wessel 《FASEB journal》2000,14(11):1559-1566
Rabs are monomeric GTP binding proteins belonging to the ras superfamily that function throughout the secretory pathway. Members of the rab3 family function in the final steps of the secretory pathway, vesicle fusion with the plasma membrane. In contrast to mammalian systems with several rab3 isoforms (rab3A-D), a single family member homologue of rab3 is present in the rapidly dividing cleavage stage sea urchin embryo that localizes to numerous vesicles enriched at the cell cortex. We hypothesized that whereas the contents of these rab3-positive vesicles may contribute to the embryonic extracellular matrix, the membrane and its constituent proteins may be important for other aspects of cell division. We tested the function of rab3 in cell division by the microinjection of either antibodies or competing effector domain peptides to interfere with its function. We found that perturbing rab3 function results in cessation of cell division, whereas cells injected with either heat-inactivated antibodies or control scrambled peptides develop as normal. Moreover, neither endocytosis nor general membrane topology are affected by rab3 perturbation. Thus, we conclude that rab3-associated vesicles and/or their contents are critical for cell division.  相似文献   

18.
Membrane fusion requires the formation of a complex between a vesicle protein (v-SNARE) and the target membrane proteins (t-SNAREs). Syntaxin 4 is a t-SNARE that, according to previous overexpression studies, is predominantly localized at the plasma membrane. In the present study endogenous syntaxin 4 was found in intracellular vesicular structures in addition to regions of the plasma membrane. In these vesicular structures syntaxin 4 colocalized with rab11, a marker of recycling endosomes. Furthermore, syntaxin 4 colocalized with actin at the dynamic regions of the plasma membrane. Treatment with N-ethylmaleimide, the membrane transport inhibitor, caused an increased accumulation of syntaxin 4/rab11 positive vesicles in actin filament-like structures. Finally, purified recombinant syntaxin 4 but not syntaxin 2 or 3 cosedimented with actin filaments in vitro, suggesting direct interaction between these two proteins. Taken together, these data suggest that syntaxin 4 regulates secretion at the actin-rich areas of the plasma membrane and may be recycled through rab11 positive intracellular membranes.  相似文献   

19.
We have prepared highly purified synaptic vesicles from rat brain by subjecting vesicles purified by our previous method to a further fractionation step, i.e., equilibrium centrifugation on a Ficoll gradient. Monoclonal antibodies to three membrane proteins enriched in synaptic vesicles--SV2, synaptophysin, and p65--each were able to immunoprecipitate specifically approximately 90% of the total membrane protein from Ficoll-purified synaptic vesicle preparations. Anti-SV2 precipitated 96% of protein, anti-synaptophysin 92%, and anti-p65 83%. These results demonstrate two points: (1) Ficoll-purified synaptic vesicles appear to be greater than 90% pure, i.e., less than 10% of membranes in the preparation do not carry synaptic vesicle-associated proteins. These very pure synaptic vesicles may be useful for direct biochemical analyses of mammalian synaptic vesicle composition and function. (2) SV2, synaptophysin, and p65 coexist on most rat brain synaptic vesicles. This result suggests that the functions of these proteins are common to most brain synaptic vesicles. However, if SV2, synaptophysin, or p65 is involved in synaptic vesicle dynamics, e.g., in vesicle trafficking or exocytosis, separate cellular systems are very likely required to modulate the activity of such proteins in a temporally or spatially specific manner.  相似文献   

20.
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号