首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate 1-semialdehyde aminotransferase has been separated from metabolically related activities by gel filtration and affinity chromatography. The enzyme was inhibited by gabaculin, 4-amino 5-fluoropentanoic acid and pyridoxal 5-phosphate and stimulated by pyridoxamine 5-phosphate. The activity of enzyme recovered by elution after electrophoresis in non-denaturing polyacrylamide gels was wholly dependent on pyridoxamine 5-phosphate. A mechanism for the enzyme-catalysed reaction based on these observations is discussed.Abbreviations AFPA 4-amino 5-fluoropentanoic acid - ALA -aminolaevulinic acid - DTT dithiothreitol - GSA glutamate 1-semialdehyde - PAL-P pyridoxal 5-phosphate - PAM-P pyridoxamine 5-phosphate - PCC Paris Culture Collection  相似文献   

2.
Although it is recognized that 4,5-diaminovaleric acid, formed from glutamate 1-semialdehyde, functions as the intermediate in the last step of delta-aminolevulinic acid formation from glutamate, the enantioselectivity of the participating glutamate 1-semialdehyde aminotransferase for 4,5-diaminovaleric acid has remained unknown. In the present work the involvement of (S)- and (R)-4,5-diaminovaleric acids, newly available by organic synthesis, was investigated, using glutamate 1-semialdehyde aminotransferase from Synechococcus. The preferred enantiomer was (S)-4,5-diaminovalerate. In experiments on the transformation of (S)-4,5-diaminovalerate to delta-aminolevulinate it was found that glutamate 1-semialdehyde aminotransferase was unusual among aminotransferases in that the common amino acceptors pyruvate, oxaloacetate, alpha-ketoglutarate were inactive, while 4,5-dioxovaleric acid could be utilized as a sluggish amino acceptor in place of glutamate 1-semialdehyde. In conclusion, glutamate 1-semialdehyde aminotransferase is highly but not absolutely enantioselective for (S)-4,5-diaminovaleric acid, and 4,5-dioxovaleric acid can function as amino acceptor not because of a physiological role in the C5 pathway of delta-aminolevulinic acid formation, but because of its structural resemblance to glutamate 1-semialdehyde.  相似文献   

3.
The metabolite 5-aminolevulinic acid (ALA) is an early committed intermediate in the biosynthetic pathway of heme and chlorophyll formation. In plants, 5-aminolevulinic acid is synthesized via a two-step pathway in which glutamyl-tRNA(Glu) is reduced by glutamyl-tRNA(Glu) reductase (GluTR) to glutamate 1-semialdehyde, followed by transformation to 5-aminolevulinic acid catalyzed by glutamate 1-semialdehyde aminotransferase. Using an Escherichia coli cell-based high-throughput assay to screen small molecule libraries, we identified several chemical classes that specifically inhibit heme/chlorophyll biosynthesis at this point by demonstrating that the observed cell growth inhibition is reversed by supplementing the medium with 5-aminolevulinic acid. These compounds were further tested in vitro for inhibition of the purified enzymes GluTR and glutamate 1-semialdehyde aminotransferase as confirmation of the specificity and site of action. Several promising compounds were identified from the high-throughput screen that inhibit GluTR with an I(0.5) of less than 10 microM. Our results demonstrate the efficacy of cell-based high-throughput screening for identifying inhibitors of 5-aminolevulinic acid biosynthesis, thus representing the first report of exogenous inhibitors of this enzyme.  相似文献   

4.
Extracts of soybean (Glycine max) root nodules and greening etiolated leaves catalyzed radiolabeled delta-aminolevulinic acid (ALA) formation from 3,4-[3H]glutamate but not from 1-[14C]glutamate. Nevertheless, those tissue extracts expressed the activity of glutamate 1-semialdehyde (GSA) aminotransferase, the C5 pathway enzyme that catalyzes ALA synthesis from GSA for tetrapyrrole formation. A soybean nodule cDNA clone that conferred ALA prototrophy, GSA aminotransferase activity, and glutamate-dependent ALA formation activity on an Escherichia coli GSA aminotransferase mutant was isolated. The deduced product of the nodule cDNA shared 79% identity with the GSA aminotransferase expressed in barley leaves, providing, along with the complementation data, strong evidence that the cDNA encodes GSA aminotransferase. GSA aminotransferase mRNA and enzyme activity were expressed in nodules but not in uninfected roots, indicating that the Gsa gene is induced in the symbiotic tissue. The Gsa gene was strongly expressed in leaves of etiolated plantlets independently of light treatment and, to a much lesser extent, in leaves of mature plants. We conclude that GSA aminotransferase, and possibly the C5 pathway, is expressed in a nonphotosynthetic plant organ for nodule heme synthesis and that Gsa is a regulated gene in soybean.  相似文献   

5.
Summary In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences.  相似文献   

6.
Glutamate-l-semialdehyde (GSA) aminotransferase catalyses the final step in the C5 pathway converting glutamate to the tetrapyrrole precursor δ-aminolaevulinic acid. This enzyme is sensitive to gabaculine (2,3-dihydro-3-amino benzoic acid) and to 4-amino-5-fluoropentanoic acid (AFPA), which are irreversible, mechanism-based inhibitors of pyridoxal phosphatedependent enzymes. Spontaneous mutants of Synechococcus PCC6301 resistant to these inhibitors contain altered enzyme that displays corresponding resistance to high concentrations of the inhibitor. The enzyme from strain GR6, resistant to both inhibitors, contains a three-amino-acid deletion at positions 5–7 and a Met248 → Ile substitution. The enzyme from strain K40 resistant to AFPA but not to gabaculine, contains a Ser163 → Thr substitution. GSA aminotransferases containing either the deletion or the substitution that are characteristic of the GR6 mutant were produced in Escherichia coli using the expression vector pMalc2. These engineered mutant enzymes were characterized in terms of their catalytic parameters and sensitivities to gabaculine and AFPA. Furthermore, maltose binding protein/aminotransferase fusion proteins were characterized spectrophotometrically to monitor the interaction of bound cofactor with diamino- and dioxocompounds related to the substrate and both inhibitors. Results were compared with those for similarly produced recombinant wild-type, K40 and GR6 GSA aminotransferases. The engineered products with either the N-terminal deletion or the Met248 → Ile substitution displayed catalytic efficiencies that were intermediate between the wild-type and GR6 or K40 enzymes. However, with respect to their absorption spectra, sensitivity to inhibitors and the reactivity of bound cofactor, they were essentially wild-type. These in vitro studies demonstrate that both changes in enzyme structure are necessary to obtain the distinctive properties of the GR6 aminotransferase, including resistance to high concentrations of gabaculine and AFPA.  相似文献   

7.
The formation of delta-aminolevulinic acid, the first committed precursor of chlorophyll biosynthesis, occurs in the chloroplast of plants and algae by the C5-pathway, a three-step, tRNA-dependent transformation of glutamate. Previously, we reported the purification and characterization of the first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase from the green alga Chlamydomonas reinhardtii (Chen, M.-W., Jahn, D., Sch?n, A., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4054-4057 and Chen, M.-W., Jahn, D., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4058-4063). Here we present the purification of the third enzyme of the pathway, the glutamate-1-semialdehyde aminotransferase from C. reinhardtii. The enzyme was purified from the membrane fraction of a whole cell extract employing four different chromatographic separations. The apparent molecular mass of the protein was approximately 43,000 Da as analyzed by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by nondenaturing rate zonal sedimentation on glycerol gradients, and by gel filtration. By these criteria, the enzyme in its active form is a monomer of 43,000 Da. In the presence of pyridoxal 5'-phosphate, purified glutamate-1-semialdehyde aminotransferase converts synthetic glutamate 1-semialdehyde to delta-aminolevulinic acid. The enzyme is inhibited by gabaculine and aminooxyacetate, both typical inhibitors of aminotransferases. The purified glutamate-1-semialdehyde aminotransferase successfully reconstitutes the whole C5-pathway in vitro from glutamate in the presence of purified glutamyl-tRNA synthetase, glutamyl-tRNA reductase, Mg2+, ATP, NADPH, tRNA, and pyridoxal 5'-phosphate.  相似文献   

8.
Atteia A  van Lis R  Beale SI 《Eukaryotic cell》2005,4(12):2087-2097
Heme biosynthesis involves a number of enzymatic steps which in eukaryotes take place in different cell compartments. Enzyme compartmentalization differs between photosynthetic and nonphotosynthetic eukaryotes. Here we investigated the structures and subcellular localizations of three enzymes involved in the heme pathway in Polytomella sp., a colorless alga evolutionarily related to the green alga Chlamydomonas reinhardtii. Functional complementation of Escherichia coli mutant strains was used to isolate cDNAs encoding three heme biosynthetic enzymes, glutamate-1-semialdehyde aminotransferase, protoporphyrinogen IX oxidase, and ferrochelatase. All three proteins show highest similarity to their counterparts in photosynthetic organisms, including C. reinhardtii. All three proteins have N-terminal extensions suggestive of intracellular targeting, and immunoblot studies indicate their enrichment in a dense cell fraction that is enriched in amyloplasts. These results suggest that even though the plastids of Polytomella sp. are not photosynthetically active, they are the major site of heme biosynthesis. The presence of a gene for glutamate-1-semialdehyde aminotransferase suggests that Polytomella sp. uses the five-carbon pathway for synthesis of the heme precursor 5-aminolevulinic acid.  相似文献   

9.
In the chloroplasts of higher plants and algae, the biosynthesis of the chlorophyll precursor delta-aminolevulinic acid (ALA) involves at least three enzymes and a tRNA species. Here we demonstrate that in cell extracts of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 ALA was formed from glutamate in a series of reactions in which activation of glutamate by glutamyl-tRNAGlu formation was the first step. The activated glutamate was reduced by a dehydrogenase which displayed tRNA sequence specificity. Fractionation of strain 6803 tRNA by reverse-phase chromatography and polyacrylamide gel electrophoresis yielded two pure tRNAGlu species which stimulated ALA synthesis in vitro. These tRNAs had identical primary sequences but differed in the nucleotide modification of their anticodon. The 6803 tRNAGlu was similar to the sequences of tRNAGlu species or tRNAGlu genes from Escherichia coli and from chloroplasts of Euglena gracilis and higher plants. Southern blot analysis revealed at least two tRNAGlu gene copies in the 6803 chromosome. A glutamate-1-semialdehyde aminotransferase, the terminal enzyme in the conversion of glutamate to ALA in chloroplasts, was detected in 6803 cell extracts by the conversion of glutamate-1-semialdehyde to ALA and by the inhibition of this reaction by gabaculin.  相似文献   

10.
In plants, algae, and most bacteria, the heme and chlorophyll precursor 5-aminolevulinic acid (ALA) is formed from glutamate in a three-step process. First, glutamate is ligated to its cognate tRNA by glutamyl-tRNA synthetase. Activated glutamate is then converted to a glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR) in an NADPH-dependent reaction. Subsequently, GSA is rearranged to ALA by glutamate-1-semialdehyde aminotransferase (GSAT). The intermediate GSA is highly unstable under physiological conditions. We have used purified recombinant GTR and GSAT from the unicellular alga Chlamydomonas reinhardtii to show that GTR and GSAT form a physical and functional complex that allows channeling of GSA between the enzymes. Co-immunoprecipitation and sucrose gradient ultracentrifugation results indicate that recombinant GTR and GSAT enzymes specifically interact. In vivo cross-linking results support the in vitro results and demonstrate that GTR and GSAT are components of a high molecular mass complex in C. reinhardtii cells. In a coupled enzyme assay containing GTR and wild-type GSAT, addition of inactive mutant GSAT inhibited ALA formation from glutamyl-tRNA. Mutant GSAT did not inhibit ALA formation from GSA by wild-type GSAT. These results suggest that there is competition between wild-type and mutant GSAT for binding to GTR and channeling GSA from GTR to GSAT. Further evidence supporting kinetic interaction of GTR and GSAT is the observation that both wild-type and mutant GSAT stimulate glutamyl-tRNA-dependent NADPH oxidation by GTR.  相似文献   

11.
Mayer SM  Beale SI 《Plant physiology》1991,97(3):1094-1102
Wild-type Euglena gracillis cells synthesize the key chlorophyll precursor, δ-aminolevulinic acid (ALA), from glutamate in their plastids. The synthesis requires transfer RNAGlu (tRNAGlu) and the three enzymes, glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde aminotransferase. Non-greening mutant Euglena strain W14ZNaIL does not synthesize ALA from glutamate and is devoid of the required tRNAGlu. Other cellular tRNAGlus present in the mutant cells were capable of being charged with glutamate, but the resulting glutamyl-tRNAs did not support ALA synthesis. Surprisingly, the mutant cells contain all three of the enzymes, and their cell extracts can convert glutamate to ALA when supplemented with tRNAGlu obtained from wild-type cells. Activity levels of the three enzymes were measured in extracts of cells grown under a number of light conditions. All three activities were diminished in extracts of cells grown in complete darkness, and full induction of activity required 72 hours of growth in the light. A light intensity of 4 microeinsteins per square meter per second was sufficient for full induction. Blue light was as effective as white light, but red light was ineffective, in inducing extractable enzyme activity above that of cells grown in complete darkness, indicating that the light control operates via the nonchloroplast blue light receptor in the mutant cells. Of the three enzyme activities, the one that is most acutely affected by light is glutamate-1-semialdehyde aminotransferase, as has been previously shown for wild-type Euglena cells. These results indicate that the enzymes required for ALA synthesis from glutamate are present in an active form in the nongreening mutant cells, even though they cannot participate in ALA formation in these cells because of the absence of the required tRNAGlu, and that the activity of all three enzymes is regulated by light. Because the absence of plastid tRNAGlu precludes the synthesis of proteins within the plastids, the three enzymes must be synthesized in the cytoplasm and their genes encoded in the nucleus in Euglena.  相似文献   

12.
Glutamate 1-semialdehyde aminotransferase (GSA-AT) is the last enzyme in the C5 pathway converting glutamate into the tetrapyrrole precursor delta-aminolevulinate in plants, algae, and several bacteria. Sequence analysis of the genes encoding GSA-AT in barley, Synechococcus, and Escherichia coli revealed 50-70% similarity in the primary structures of the proteins. The enzyme is inhibited rapidly by gabaculine when added in approximately stoichiometric amounts with the enzyme. A gabaculine-tolerant Synechococcus strain, GR6, was found to produce a GSA-AT less sensitive to the inhibitor. Accordingly, the mutant gene was isolated and sequenced. In comparison with the wild-type gene it contains a deletion of nine nucleotides (position 12-20) and a guanine to adenine substitution (position 743). This resulted in the loss of the amino acids serine, proline, and phenylalanine (position 5-7) close to the NH2 terminus of the enzyme and an exchange of Met-248 for isoleucine in the middle of the polypeptide chain. Wild-type and mutant GSA-AT were expressed in E. coli and purified close to homogeneity. Although the specific activity of the mutant GSA-AT was only one-fifth of the wild type, it displayed a 100-fold increased resistance to gabaculine. Peaks in the absorption spectrum of the purified recombinant GSA-ATs at 335 and 417 nm are typical of a transaminase containing a B6 cofactor. Incubation with substrate and with inhibitor induced spectral changes characteristic of other gabaculine-sensitive, B6-requiring enzymes.  相似文献   

13.
4-Aminobutyrate aminotransferase (GABAT) from Pseudomonas aeruginosa was purified 64-fold to apparent electrophoretic homogeneity from cells grown with 4-aminobutyrate as the only source of carbon and nitrogen. Purified GABAT catalyzed the transamination of 4-aminobutyrate, N2-acetyl-L-ornithine, L-ornithine, putrescine, L-lysine, and cadaverine with 2-oxoglutarate (listed in order of decreasing activity). The enzyme is induced in cells grown on 4-guanidinobutyrate, 4-aminobutyrate, or putrescine as the only carbon and nitrogen source. Cells grown on arginine or on glutamate contained low levels of the enzyme. The regulation of the synthesis of GABAT as well as the properties of the mutant with an inactive N2-acetyl-L-ornithin 5-aminotransferase suggest that GABAT functions in the biosynthesis of arginine by convertine N2-acetyl-L-glutamate 5-semialdehyde to N2-acetyl-Lornithine as well as in catabolic reactions during growth on putrescine or 4-guanidinobutyrate but not during growth on arginine.  相似文献   

14.
Tumour-derived p53 mutants are thought to have acquired ‘gain-of-function’ properties that contribute to oncogenicity. We have tested the hypothesis that p53 mutants suppress p53-target gene expression, leading to enhanced cellular growth. Silencing of mutant p53 expression in several human cell lines was found to lead to the upregulation of wild-type p53-target genes such as p21, gadd45, PERP and PTEN. The expression of these genes was also suppressed in H1299-based isogenic cell lines expressing various hot-spot p53 mutants, and silencing of mutant p53, but not TAp73, abrogated the suppression. Consistently, these hot-spot p53 mutants were able to suppress a variety of p53-target gene promoters. Analysis using the proto-type p21 promoter construct indicated that the p53-binding sites are dispensable for mutant p53-mediated suppression. However, treatment with the histone deacetylase inhibitor trichostatin-A resulted in relief of mutant p53-mediated suppression, suggesting that mutant p53 may induce hypo-acetylation of target gene promoters leading to the suppressive effects. Finally, we show that stable down-regulation of mutant p53 expression resulted in reduced cellular colony growth in human cancer cells, which was found to be due to the induction of apoptosis. Together, the results demonstrate another mechanism through which p53 mutants could promote cellular growth.  相似文献   

15.
Chlorophyll reduction in the seed of Brassica can be achieved by downregulating its synthesis. To reduce chlorophyll synthesis, we have used a cDNA clone of Brassica napus encoding glutamate 1-semialdehyde aminotransferase (GSA-AT) to make an antisense construct for gene manipulation. Antisense glutamate 1-semialdehyde aminotransferase gene (Gsa) expression, directed by a Brassica napin promoter, was targeted specifically to the embryo of the developing seed. Transformants expressing antisense Gsa showed varying degrees of inhibition resulting in a range of chlorophyll reduction in the seeds. Seed growth and development were not affected by reduction of chlorophyll. Seeds from selfed transgenic plants germinated with high efficiency and growth of seedlings was vigorous. Seedlings from T2 transgenic lines segregated into three distinctive phenotypes: dark green, light green and yellow, indicating the dominant inheritance of Gsa antisense gene. These transgenic lines have provided useful materials for the development of a low chlorophyll seed variety of B. napus.  相似文献   

16.
delta-Aminolevulinic acid, the biosynthetic precursor of tetrapyrroles, is synthesized from glutamate via the tRNA-dependent five-carbon pathway in the green sulfur bacterium Chlorobium vibrioforme. The enzyme glutamyl-tRNA reductase (GTR), encoded by the hemA gene, catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. To characterize the GTR protein, the hemA gene from C. vibrioforme was cloned into expression plasmids that added an N-terminal His(6) tag to the expressed protein. The His-tagged GTR protein was purified using Ni affinity column chromatography. GTR was observable as a 49-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. The native molecular mass, as determined by gel filtration chromatography, appeared to be approximately 40 kDa, indicating that native GTR is a monomer. However, when the protein was mixed with 5% (vol/vol) glycerol, the product had an apparent molecular mass of 95 kDa, indicating that the protein is a dimer under these conditions. Purified His(6)-GTR was catalytically active in vitro when it was incubated with Escherichia coli glutamyl-tRNA(Glu) and purified recombinant Chlamydomonas reinhardtii glutamate-1-semialdehyde aminotransferase. The expressed GTR contained 1 mol of tightly bound heme per mol of pep tide subunit. The heme remained bound to the protein throughout purification and was not removed by anion- or cation-exchange column chromatography. However, the bound heme was released during SDS-PAGE if the protein was denatured in the presence of beta-mercaptoethanol. Added heme did not inhibit the activity of purified expressed GTR in vitro. However, when the GTR was expressed in the presence of 3-amino-2,3- dihydrobenzoic acid (gabaculine), an inhibitor of heme synthesis, the purified GTR had 60 to 70% less bound heme than control GTR, and it was inhibited by hemin in vitro.  相似文献   

17.
The synthesis of δ-aminolevulinate from glutamate by Chlamydomonas reinhardtii membrane-free cell homogenates requires Mg2+, ATP, and NADPH as cofactors. The pH optimum is about 8.3. When analyzed by a Fractogel TSK gel filtration column the δ-aminolevulinate synthesizing enzymes, including glutamate-1-semialdehyde aminotransferase, elute with an apparent molecular weight of about 45,000. The enzymes obtained from the gel filtration column were separated into three fractions by affinity column chromatography. One fraction binds to heme-Sepharose, one to Blue Sepharose, while the enzyme converting the putative glutamate-1-semialdehyde to δ-aminolevulinic acid is retained by neither column. All three fractions are necessary for the conversion of glutamate to δ-aminolevulinate. The δ-aminolevulinate synthesizing enzymes from Chlamydomonas are sensitive to inhibition by heme but not sensitive to inhibition by protoporphyrin.  相似文献   

18.
M Ikemi  K Murakami  M Hashimoto  Y Murooka 《Gene》1992,121(1):127-132
Several mutants of Escherichia coli that had lost their ability to synthesize delta-aminolevulinic acid (ALA) via the C5 pathway were isolated. Their defective loci were classified into two groups, AlaA- and AlaB-. The genes that complemented these mutations were cloned. Nucleotide sequencing indicated that the gene that complemented AlaA- was identical to hemL which is located at 4 min on the E. coli chromosome and encodes glutamate 1-semialdehyde aminotransferase. The gene complementing AlaB- contained an open reading frame (ORF) encoding a polypeptide of 207 amino acids that was found to be a new gene involved in the synthesis of ALA via the C5 pathway. Thus, we designated the gene hemM. The hemM gene was adjacent to hemA that is located at 27 min and previously thought to encode glutamyl-tRNA dehydrogenase. However, we found that hemA complemented both the AlaA- (hemL) and AlaB- (hemM) mutants defective in the C5 pathway although the transformants showed small colonies on the selective medium without ALA. These results suggest that hemA is not involved in the C5 pathway, but controls a second, minor pathway for the synthesis of ALA.  相似文献   

19.
L L Ilag  D Jahn 《Biochemistry》1992,31(31):7143-7151
Glutamate 1-semialdehyde aminotransferase (glutamate 1-semialdehyde 2,1-aminomutase; EC 5.4.3.8; GSA-AT) catalyzes the transfer of the amino group on carbon 2 of glutamate 1-semialdehyde (GSA) to the neighboring carbon 1 to form delta-aminolevulinic acid (ALA). To gain insight into the mechanism of this enzyme, possible intermediates were tested with purified enzyme and the reaction sequence was followed spectroscopically. While 4,5-dioxovaleric acid (DOVA) was efficiently converted to ALA by the pyridoxamine 5'-phosphate (PMP) form of the enzyme, 4,5-diaminovaleric acid (DAVA) was a substrate for the pyridoxal 5'-phosphate (PLP) form of GSA-AT. Thus, both substances are reaction intermediates. The purified enzyme showed an absorption spectrum with a peak around 338 nm. Addition of PLP led to increased absorption at 338 nm and a new peak around 438 nm. Incubation of the purified enzyme with PMP resulted in an additional absorption peak at 350 nm. The reaction of the PLP and PMP form of the enzyme with GSA allowed the detection of a series of peaks which varied in their intensities in a time-dependent manner. The most drastic changes to the spectrum that were observed during the reaction sequence were at 495 and 540 nm. Some of the detected absorption bands during GSA-AT catalysis were previously described for several other aminotransferases, indicating the relationship of the mechanisms. The reaction of the PMP form of the enzyme with DOVA resulted in a similar spectrum as described above, while the spectrum for the conversion of DAVA by the PLP form of the enzyme indicated a different mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effects of intraperitoneal administration of (S)-4-amino-5-fluoropentanoic acid, a mechanism-based covalent inactivator of γ-aminobutyric acid transaminase (GABA-T), on whole brain GABA metabolism in mice were investigated. A dose-dependent and time-dependent irreversible inactivation of GABA-T was observed with a concomitant increase in whole brain GABA levels. The compound exhibited no in vitro nor in vivo time-dependent inhibition of glutamate decarboxylase (GAD), alanine transaminase, or aspartate transaminase (Asp-T). It was, however, a potent competitive reversible inhibitor of GAD and a weak competitive inhibitor of Asp-T. The chloro analogue, (S)-4-amino-5-chloropentanoic acid, was ineffective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号