首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Necroptosis represents a form of programmed cell death that can be engaged by various upstream signals, for example by ligation of death receptors, by viral sensors or by pattern recognition receptors. It depends on several key signaling proteins, including the kinases Receptor-Interacting Protein (RIP)1 and RIP3 and the pseudokinase mixed-lineage kinase domain-like protein (MLKL). Necroptosis has been implicated in a number of physiological and pathophysiological conditions and is disturbed in many human diseases. Thus, targeted interference with necroptosis signaling may offer new opportunities for the treatment of human diseases. Besides structure-based drug design, in recent years drug repositioning has emerged as a promising alternative to develop drug-like compounds. There is accumulating evidence showing that multi-targeting kinase inhibitors, for example Dabrafenib, Vemurafenib, Sorafenib, Pazopanib and Ponatinib, used for the treatment of cancer also display anti-necroptotic activity. This review summarizes recent evidence indicating that some anticancer kinase inhibitors also negatively affect necroptosis signaling. This implies that some cancer therapeutics may be repurposed for other pathologies, e.g. ischemic or inflammatory diseases.  相似文献   

2.
Accurate early diagnosis of osteomyelitis is critical for optimal clinical management. Conventional radiology (X-rays, CT) and nuclear medicine scans (bone, gallium, and technetium/indium white blood cell [WBC]) have limitations and drawbacks. The monoclonal antibody (MAb) ImmuRAIDTM-MN3 (Immunomedics Inc., Morris Plains, NJ), a 99m-Tc Antigranulocyte Fab' fragment, recognizes a surface glycoprotein NCA-90/95 shared by granulocytes, carcino-embryonic antigen (CEA), and meconium antigen (MA). Intravenous injection of radiolabeled MAb enables in vivo labeling of human granulocytes and targets infected lesions in the bone and throughout the body. Technetium labeled Fab' fragments rapidly clear the blood pool and high-quality images can be obtained the same day, as early as 1 h postinjection. Results at our institution on 13 patients with clinically suspected osteomyelitis of infected long bones, prostheses, and diabetic foot ulcers were compared with the surgical/bacteriological verification of the presence or absence of infection. The MAb scan showed six true positives, six true negatives, and one false negative (very low grade infection). The procedure was safe, no clinical or laboratory adverse reactions were encountered. The MAb fragments are markedly less immunogenic than whole IgG, resulting in lower induction of human antimouse antibody (HAMA) titers. No HAMA to this MAb fragment has been detected in 24 patients (data from multiple institutions). Our preliminary results suggest that 99m-Tc ImmuRAIDTM-MN3 is highly accurate for detection of osteomyelitis. This study is part of an on-going multiinstitutional project sponsored by Immunomedics, Inc. to evaluate the efficacy and safety of this radiopharmaceutical.  相似文献   

3.
The ability of liposomes bearing anti-HLA-DR Fab' fragments to target cells expressing the human HLA-DR determinant of the major histocompatibility complex class II (MHC-II) has been evaluated and compared to that of conventional liposomes. Anti-HLA-DR immunoliposomes did not bind to HLA-DR-negative cells. In contrast, a high level of binding was observed following incubation of immunoliposomes with cells bearing important levels of human HLA-DR. The accumulation of conventional and murine anti-HLA-DR immunoliposomes in different tissues has been investigated following a single subcutaneous injection given in the upper back of C3H mice. Anti-HLA-DR immunoliposomes resulted in a much better accumulation in the cervical and brachial lymph nodes when compared to conventional liposomes. The accumulation in the liver was similar for both liposomal preparations, whereas an approximately twofold decrease in accumulation was observed for immunoliposomes in the spleen. Given that HLA-DR surface marker is expressed on monocyte/macrophages and activated CD4+ T lymphocytes, the primary cellular reservoirs of the human immunodeficiency virus (HIV), the use of liposomes bearing surface-attached anti-HLA-DR could constitute a convenient strategy to more efficiently treat this debilitating retroviral disease. Moreover, the reported incorporation of high amounts of host-encoded HLA-DR proteins by HIV particles renders the use of liposomes bearing anti-HLA-DR antibodies even more attractive.  相似文献   

4.
A simple and efficient method is described for the production of pure bispecific F(ab' gamma)2 heterodimers, in which the individual antibody Fab' gamma fragments are joined via a stable thioether linkage. Hybrid molecules were constructed from both mouse monoclonal and rabbit polyclonal antibodies with equal efficiency, in the combinations mouse-rabbit and mouse-mouse. Peptic F(ab' gamma)2 fragments from the two chosen antibodies were first reduced to provide Fab' gamma SH. The SH groups on one of the Fab' gamma SH partners were then fully alkylated with o-phenylenedi-maleimide to provide free maleimide groups. Finally the two preparations, Fab' gamma mal and Fab' gamma SH, combined under conditions which allowed cross-linking of the maleimide and SH groups and avoided reoxidation of SH groups. The major product isolated from the reaction mixture after chromatography was always the F(ab' gamma)2 heterodimer (50 to 70%), other products being unreacted Fab' gamma and trace amounts of putative F(ab' gamma)3. Immunochemical analysis revealed that the thioether-linked F(ab' gamma)2 molecules were essentially all heterodimers, most of which had been joined via their Fd chains. The dual specificity of F(ab' gamma)2 heterodimers was tested functionally in three systems: 1) the combination (anti-idiotype + anti-phycoerythrin) linked L2C cells to the fluorochrome phycoerythrin, allowing fluorescence analysis; 2) the combination (anti-idiotype + anti-saporin) linked L2C cells to the ribosome-inactivating protein saporin, and transformed a subtoxic dose of saporin into a highly toxic mixture which prevented further protein synthesis by L2C cells; and 3) the combination of anti-idiotype with 3G8 (antibody to the Fc gamma receptor CD16) subjected L2C cells to cytotoxic attack by human mononuclear effectors.  相似文献   

5.
Protein kinases have been important targets for antitumor targets due to their key roles in regulating multiple cell signaling pathways. Numerous compounds containing flavonoid scaffold as an indispensable anchor have been found to be potent inhibitors of protein kinases. Some of these flavonoids have been in clinical research as protein kinases inhibitors. Thus, the present review mainly focuses on the structural requirement for anticancer potential of flavone derivatives targeting several key serine/threonine protein kinases. This information may provide an opportunity to scientists of medicinal chemistry to design multi-functional flavone derivatives for the treatment of cancer.  相似文献   

6.
v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.  相似文献   

7.
8.
Receptor tyrosine kinases as targets for anticancer drugs.   总被引:3,自引:0,他引:3  
Receptor tyrosine kinases (RTKs) are the primary mediators of the signaling network that transmit extracellular signals into the cell. Gene amplification and/or overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal autocrine-paracrine growth factor loops contribute to constitutive RTK signaling, ultimately resulting in the manifestation of dysregulated cell growth and cancer. The mechanism of uncontrolled RTK signaling that leads to cancer has provided the rationale for anti-RTK drug development. Strategies towards the prevention and interception of RTK signaling include monoclonal antibodies, small-molecule inhibitors, immunotoxins and antisense oligonucleotides.  相似文献   

9.
Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab′ expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab′, DsbC had the most significant impact, increasing humanized Fab′ production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored “wild type” cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab′ induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab′ fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212–220, 2017  相似文献   

10.
The effect of anticancer drugs and toxic compounds on cultures of human leukemic cells was evaluated by an enzyme-linked immunosorbent assay (Apoptosis ELISA) that uses a monoclonal antibody against single-stranded DNA to quantitate the apoptotic cells. The concentrations of 13 anticancer drugs, which increased Apoptosis ELISA absorbance, were close to the cytotoxic concentrations determined by the long-term cell survival assay. Short-term tetrazolium-based microculture tetrazolium (MTT) assay was significantly less sensitive than the Apoptosis ELISA and the cell survival assay for all anticancer drugs. For 6 drugs, cytotoxic concentrations measured by the MTT assay were at least 1 log higher than the concentrations inducing apoptosis. Importantly, in contrast to the anticancer drugs, 14 toxic chemicals did not increase the Apoptosis ELISA absorbance at cytotoxic concentrations. The difference in apoptosis induction by the anticancer drugs and the toxic chemicals was especially large in cultures treated with drug concentrations 2-fold higher than the IC(50) dose. Although all of the anticancer drugs tested induced intense ELISA reaction (mean absorbance 2.0), all toxic chemicals tested did not induce apoptosis. The Apoptosis ELISA assay could have useful applications in drug development as it can distinguish between clinically useful anticancer drugs and toxic compounds, has sensitivity similar to that of the long-term cell survival assay, and provides insight into the mechanism of drug cytotoxicity by differentiating between compounds killing cells by apoptosis and necrosis.  相似文献   

11.
Over the past years, monoclonal antibodies have attracted enormous interest as targeted therapeutics, and a number of such reagents are in clinical use. However, responses could not be achieved in all patients with tumors expressing high levels of the respective target antigens, suggesting that other factors such as limited recruitment of endogenous immune effector mechanisms can also influence treatment outcome. This justifies the search for alternative, potentially more effective reagents. Antibody-toxins and cytolytic effector cells genetically modified to carry antibody-based receptors on the surface, represent such tailor-made targeting vehicles with the potential of improved tumor localization and enhanced efficacy. In this way, advances in recombinant antibody technology have made it possible to circumvent problems inherent in chemical coupling of antibodies and toxins, and have allowed construction via gene fusion of recombinant molecules which combine antibody-mediated recognition of tumor cells with specific delivery of potent protein toxins of bacterial or plant origin. Likewise, recombinant antibody fragments provide the basis for the construction of chimeric antigen receptors that, upon expression in cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells, link antibody-mediated recognition of tumor antigens with these effector cells potent cytolytic activities, thereby making them promising cellular therapeutics for adoptive cancer therapy. Here, general principles for the derivation of cytotoxic proteins and effector cells with antibody-dependent tumor specificity are summarized, and current strategies to employ these molecules and cells for directed cancer therapy are discussed, focusing mainly on the tumor-associated antigens epidermal growth factor receptor (EGFR) and the closely related ErbB2 (HER2) as targets.This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   

12.
The crystal structure of a chimeric Fab' fragment of a monoclonal antibody is presented. The Fab' comprises the murine light chain and heavy chain variable domains of the carcinoma-binding antibody B72.3 fused to the constant domain of human kappa, and the first constant domain and hinge domain of human gamma 4, respectively. A model for the Fab' has been determined by molecular replacement and refined to a resolution of 3.1 A with an R-factor of 17.6%. The additional residues that distinguish a Fab' from a Fab fragment are seen to be disordered in the crystals. The H3 hypervariable loop is short and adopts a sharp hairpin turn in a conformation that results from an interaction between the lysine side-chain of H93 and the main-chain carbonyl group of H96. The remaining hypervariable loops display conformations similar to those predicted from the canonical structures approach, although loop H2 is apparently displaced by a salt-bridge formed between H55 Asp and the neighbouring H73 Lys. These and other features of the structure likely to be important in grafting the hypervariable loops to an otherwise human framework are discussed.  相似文献   

13.
Many cancer patients are treated with a combination of anticancer drugs. Here, we discuss the importance of drug scheduling and the need for studies that investigate the optimal timing of the various anticancer drugs. Positron emission tomography (PET) using radiolabeled anticancer drugs could be an important tool for those studies.  相似文献   

14.
Retroviral vectors displaying functional antibody fragments.   总被引:16,自引:1,他引:15       下载免费PDF全文
We have made retrovirus particles displaying a functional antibody fragment. We fused the gene encoding an antibody fragment directed against a hapten with that encoding the viral envelope protein (Pr80env) of the ecotropic Moloney murine leukemia virus. The fusion gene was co-expressed in ecotropic retroviral packaging cells with a retroviral plasmid carrying the neomycin phosphotransferase gene (neo), and retroviral particles with specific hapten binding activities were recovered. Furthermore the hapten-binding particles were able to transfer the neo gene and the antibody-envelope fusion gene to mouse fibroblasts. In principle, the display of antibody fragments on the surface of recombinant retroviral particles could be used to target virus to cells for gene delivery, or to retain the virus in target tissues.  相似文献   

15.
16.
We have produced single-chain antibody (scFv) fragments in bacteria specific for carcinoembryonic antigen (CEA). Polymerase chain reaction (PCR) was used for the cloning and modification of the heavy and light variable regions (VH and VL) of the mouse monoclonal antibody (MAb) CB-CEA.1. A 14-amino acid linker was used in the synthesis of the scFv gene. The VH and VL regions were amplified from cDNA by PCR using 5' end FR1 and 3' end constant region primers, and then sequenced. VH was then amplified by PCR using an exact 5' end FR1 primer, and a phosphorylated (PP) 3' end primer for J2 that also encoded the first 7 amino acids of the linker. VL was amplified with a PP 5' end primer for FR1, also encoding the remaining 7 amino acids of the linker, and a 3' end primer for J5, plus a stop codon and a BglII restriction site. The fragments were ligated and reamplified with the PP VH 5' and VL 3' end primers. The VH-linker-VL structure was blunt-cloned into expression vectors bearing the tryptophan promoter and pelB or ompA signal peptide sequences. Culture supernatant, bacteria pellet and periplasm preparations were assayed in Western blot and a protein of about 27 kDa was identified with rabbit antibodies specific for the Fab of CB-CEA.1. Bacterial supernatant and periplasm preparations also inhibited the recognition of CEA by HRP-labeled CB-CEA.1 in enzyme-linked immunosorbent assay (ELISA). Periplasm preparations were purified by affinity chromatography with specific anti-idiotypic MAbs. The Western blot of the eluates identified a protein of approximately 27 kDa that blocked the recognition of CEA by HRP-labeled CB-CEA.1 in ELISA. The VH-linker-VL structure was cloned into a vector bearing the lacZ promoter and the pelB signal peptide. The recombinant bacterial clones also expressed about 27 kDa scFv, specific for CEA.  相似文献   

17.
Pyrrolizine derivatives constitute a class of heterocyclic compounds which can serve as promising scaffolds for anticancer drugs. The unique antitumor properties of mitomycin C inspired chemists to develop different pyrrolizine systems and assess their potential antitumor activities against a wide variety of cancer types. Here we review the different classes of pyrrolizines that possess anticancer potency, with an emphasis on their structure activity relationships, in an effort to pave the way for further development in this promising area of research.  相似文献   

18.
There are now around 60 cytotoxic drugs licensed for use in cancer therapy in the United Kingdom. For certain malignancies such as childhood cancers, haematological malignancies, and germ cell tumours chemotherapy has been pivotal to the substantial improvement in therapeutic outcome achieved over the past 10 years. In contrast, improvements in the systemic management of adult solid tumours have been less dramatic. There is a clear and urgent need for new, more effective drugs for lung, breast, and colorectal malignancies. This paper examines the processes in identifying, developing, and evaluating new drugs with anticancer activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号