共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The core histone tail domains are "master control switches" that help define the structural and functional characteristics of chromatin at many levels. The tails modulate DNA accessibility within the nucleosome, are essential for stable folding of oligonucleosome arrays into condensed chromatin fibers, and are important for fiber-fiber interactions involved in higher order structures. Many nuclear signaling pathways impinge upon the tail domains, resulting in posttranslational modifications that are likely to alter the charge, structure, and/or interactions of the core histone tails or to serve as targets for the binding of ancillary proteins or other enzymatic functions. However, currently we have only a marginal understanding of the molecular details of core histone tail conformations and contacts. Here we review data related to the structures and interactions of the core histone tail domains and how these domains and posttranslational modifications therein may define the structure and function of chromatin. 相似文献
4.
《Epigenetics》2013,8(6):791-797
Recently, Pérez-Montero and colleagues (Developmental cell, 26: 578–590, 2013) described the occurrence of a new histone H1 variant (dBigH1) in Drosophila. The presence of unusual acidic amino acid patches at the N-terminal end of dBigH1 is in contrast to the arginine patches that exist at the N- and C-terminal domains of other histone H1-related proteins found in the sperm of some organisms. This departure from the strictly lysine-rich composition of the somatic histone H1 raises a question about the true definition of its protein members. Their minimal essential requirements appear to be the presence of a lysine- and alanine–rich, intrinsically disordered C-terminal domain, with a highly helicogenic potential upon binding to the linker DNA regions of chromatin. In metazoans, specific targeting of these regions is further achieved by a linker histone fold domain (LHFD), distinctively different from the characteristic core histone fold domain (CHFD) of the nucleosome core histones. 相似文献
5.
Recently, Pérez-Montero and colleagues (Developmental cell, 26: 578–590, 2013) described the occurrence of a new histone H1 variant (dBigH1) in Drosophila. The presence of unusual acidic amino acid patches at the N-terminal end of dBigH1 is in contrast to the arginine patches that exist at the N- and C-terminal domains of other histone H1-related proteins found in the sperm of some organisms. This departure from the strictly lysine-rich composition of the somatic histone H1 raises a question about the true definition of its protein members. Their minimal essential requirements appear to be the presence of a lysine- and alanine–rich, intrinsically disordered C-terminal domain, with a highly helicogenic potential upon binding to the linker DNA regions of chromatin. In metazoans, specific targeting of these regions is further achieved by a linker histone fold domain (LHFD), distinctively different from the characteristic core histone fold domain (CHFD) of the nucleosome core histones. 相似文献
6.
Erica Shen Hennady Shulha Zhiping Weng Schahram Akbarian 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1652)
The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders. 相似文献
7.
Michael James Apta‐Smith Juan Ramon Hernandez‐Fernaud Andrew James Bowman 《The EMBO journal》2018,37(19)
Newly synthesised histones are thought to dimerise in the cytosol and undergo nuclear import in complex with histone chaperones. Here, we provide evidence that human H3.1 and H4 are imported into the nucleus as monomers. Using a tether‐and‐release system to study the import dynamics of newly synthesised histones, we find that cytosolic H3.1 and H4 can be maintained as stable monomeric units. Cytosolically tethered histones are bound to importin‐alpha proteins (predominantly IPO4), but not to histone‐specific chaperones NASP, ASF1a, RbAp46 (RBBP7) or HAT1, which reside in the nucleus in interphase cells. Release of monomeric histones from their cytosolic tether results in rapid nuclear translocation, IPO4 dissociation and incorporation into chromatin at sites of replication. Quantitative analysis of histones bound to individual chaperones reveals an excess of H3 specifically associated with sNASP, suggesting that NASP maintains a soluble, monomeric pool of H3 within the nucleus and may act as a nuclear receptor for newly imported histone. In summary, we propose that histones H3 and H4 are rapidly imported as monomeric units, forming heterodimers in the nucleus rather than the cytosol. 相似文献
8.
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics. 相似文献
9.
10.
Stephan I. Dimitrov Vladimir L. Makarov Lyuben N. Marekov Beltcho G. Beltchev 《International journal of biological macromolecules》1985,7(2):122-124
In this study we attempt to differentiate between the effects of the non-histone chromosomal proteins and histone H1 on the structure of the nucleosomes and the chromatin fibre in solution. The properties of chromatin preparations with different histone H1 and non-histone protein compositions were compared using circular dichroism and flow linear dichroism and the following conclusions were drawn. When histone H1 is absent the non-histone proteins partially prevent the unfolding of the nucleosomes at low ionic strength. The complete blocking of this unfolding, however, is accomplished only in the presence of histone H1. The non-histone proteins do not affect the orientation of the nucleosomes along the fibre axis. Only histone H1 can maintain the positive anisotropy of the chromatin fibre. 相似文献
11.
12.
13.
Molecular dynamics computer simulations were performed for the 25-residue N-terminal tail of the H3 histone protein in the proximity of a DNA segment of 10 base pairs (bp), representing a model for the linker DNA in chromatin. Several least biased configurations were used as initial configurations. The secondary structure content of the protein was increased by the presence of DNA close to it, but the locations of the secondary motifs were different for different initial orientations of the DNA grooves with respect to the protein. As a common feature to all simulations, the electrostatic attraction between negatively charged DNA and positively charged protein was screened by the water solvent and counterbalanced by the intrinsic compaction of the protein due to hydrophobic effects. The protein secondary structure limited the covering of DNA by the protein to 4-5 bp. The degree of compaction and charge density of the bound protein suggests a possible role of H3 tail in a nonspecific bending and plasticity of the linker DNA when the protein is located in the crowded dense chromatin. 相似文献
14.
染色质可及性(chromatin accessibility)作为一种衡量染色质结合因子与染色质DNA结合能力高低的染色质属性,是评价染色质结构稳态的重要指标之一,在多种细胞核进程中扮演重要角色,包括基因转录调控以及DNA损伤修复等。该属性的异常调控与多种疾病的发生发展密切相关,包括肿瘤以及神经退行性疾病等。对于该属性探究已经成为生命科学与疾病领域的热点。伴随越来越多的新技术应运而生,例如染色质构象捕获技术、高通量测序技术以及两种技术的结合等。随着技术的进步,多种参与调控染色质可及性的因素被发现和总结,包括核小体占位、组蛋白修饰以及非编码RNA等。多项大规模的染色质组学数据绘制了多种疾病的染色质可及性图谱,为揭示疾病的发生发展与染色质可及性之间的关系提供了数据支持。同时,随着单细胞染色质可及性测序技术的发展,实现了对细胞类型染色质层面的划分,弥补了单纯依赖基因表达划分细胞类型的不足。本文将从染色质的组成与可及性、影响染色质可及性的因素、染色质可及性的检测方法,以及染色质可及性与癌症的关系等方面简要阐述染色质可及性的研究进展。 相似文献
15.
16.
Brower-Toland B Wacker DA Fulbright RM Lis JT Kraus WL Wang MD 《Journal of molecular biology》2005,346(1):135-146
The distinct contributions of histone tails and their acetylation to nucleosomal stability were examined by mechanical disruption of individual nucleosomes in a single chromatin fiber using an optical trap. Enzymatic removal of H2A/H2B tails primarily decreased the strength of histone-DNA interactions located approximately +/-36bp from the dyad axis of symmetry (off-dyad strong interactions), whereas removal of the H3/H4 tails played a greater role in regulating the total amount of DNA bound. Similarly, nucleosomes composed of histones acetylated to different degrees by the histone acetyltransferase p300 exhibited significant decreases in the off-dyad strong interactions and the total amount of DNA bound. Acetylation of H2A/H2B appears to play a particularly critical role in weakening the off-dyad strong interactions. Collectively, our results suggest that the destabilizing effects of tail acetylation may be due to elimination of specific key interactions in the nucleosome. 相似文献
17.
18.
19.