首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three sequence components direct high affinity binding of dimeric SV40 T antigen to SV40 origin region I. Two signals are encoded by two directly repeated 5′-GAGGC-3′ pentanucleotides. Approximately equal contributions to binding stability are made by each pentanucleotide, and both spacing and orientation of the pentanucleotides are important for binding affinity. The third vital component is contained in a 5′-TTTTTTG-3′ spacer sequence that separates the pentanucleotides. Sequence-specific features of the spacer stabilize binding to the adjacent pentanucleotides. The asymmetry of the spacer suggests that a novel binding mechanism is involved. Because the alignment of T antigen on mutant and wild-type DNAs is similar, we propose that any two of the three sequence signals are sufficient to determine the unique arrangement of a bound protein dimer.  相似文献   

2.
Seventeen base pairs of DNA from SV40 origin region I encode a tripartite binding site for a dimeric mass of SV40 large T antigen. Two binding components are the directly repeated pentanucleotide sequences 5'-GAGGC-3'/5'-GCCTC-3'. The third component is the asymmetric sequence 5'-TTTTTTG-3'/5'-CAAAAAA-3' that separates the pentanucleotides. Nucleotide-specific features of this spacer element stabilize binding to the adjacent pentanucleotides. We report here that the spacer sequence determines a DNA conformation that correlates with high affinity binding of T antigen. The nature of the spacer sequence suggests that the DNA is bent. We propose that binding of T antigen to region I proceeds through monomer-pentanucleotide interactions and either protein-protein or protein-spacer interactions directed by the spacer-encoded structure.  相似文献   

3.
To better define protein-DNA interactions at a eukaryotic origin, the domain of simian virus 40 (SV40) large T antigen that specifically interacts with the SV40 origin has been purified and its binding to DNA has been characterized. Evidence is presented that the affinity of the purified T antigen DNA-binding domain for the SV40 origin is comparable to that of the full-length T antigen. Furthermore, stable binding of the T antigen DNA-binding domain to the SV40 origin requires pairs of pentanucleotide recognition sites separated by approximately one turn of a DNA double helix and positioned in a head-to-head orientation. Although two pairs of pentanucleotides are present in the SV40 origin, footprinting and band shift experiments indicate that binding is limited to dimer formation on a single pair of pentanucleotides. Finally, it is demonstrated that the T antigen DNA-binding domain interacts poorly with single-stranded DNA.  相似文献   

4.
Investigation of the DNA binding properties of the simian virus 40 (SV40) A protein (large T antigen) and the hybrid adenovirus-SV40 D2 protein revealed that both viral proteins protect similar regions of SV40 DNA from digestion by DNase I or methylation by dimethyl sulfate. However, the interaction of D2 protein with DNA was more sensitive to increases of NaCl concentration than was the interaction of wild-type SV40 A protein. Dimethylsulfate footprinting identified 13 DNA pentanucleotide contact sites at the viral origin of replication. The sequences of these sites corresponded to the consensus family 5'-(G greater than T) (A greater than G)GGC-3'. The pentanucleotides were distributed in three regions of origin DNA. Region I contained three pentanucleotide contact sites arranged as direct repetitions encompassing a span of 23 base pairs. In region II, four pentanucleotides were oriented as inverted repetitions that also spanned a total of 23 base pairs. Region III had six recognition pentanucleotides arranged as direct repetitions in a space of 59 base pairs. These fundamental variations in DNA arrangement are likely to determine different patterns of protein binding in each region.  相似文献   

5.
Specific binding of simian virus 40 large T antigen to origin region DNA requires the interaction of T antigen with multiples of a consensus recognition pentanucleotide sequence (5'-G[T]-A[G]-G-G-C-3'). To assess the interaction of T antigen with cytosine residues in the recognition sequences, bacterial methylases were used to methylate simian virus 40 form I DNA in vitro at specific cytosine residues. Methylation of a subset of the cytosine residues in the pentanucleotide sequences resulted in enhanced binding of T antigen to origin region DNA. Enhanced binding to the methylated pentanucleotides indicates that the methyl groups introduced on this subset of pentanucleotide cytosine residues could not have sterically interfered with the interaction of T antigen with the recognition sequences. This lack of steric interference suggests that T antigen does not make close contact in the major groove with these particular cytosine residues during normal binding.  相似文献   

6.
By using a DNA fragment immunoassay, the binding of simian virus 40 (SV40) and polyomavirus (Py) large tumor (T) antigens to regulatory regions at both viral origins of replication was examined. Although both Py T antigen and SV40 T antigen bind to multiple discrete regions on their proper origins and the reciprocal origin, several striking differences were observed. Py T antigen bound efficiently to three regions on Py DNA centered around an MboII site at nucleotide 45 (region A), a BglI site at nucleotide 92 (region B), and another MboII site at nucleotide 132 (region C). Region A is adjacent to the viral replication origin, and region C coincides with the major early mRNA cap site. Weak binding by Py T antigen to the origin palindrome centered at nucleotide 3 also was observed. SV40 T antigen binds strongly to Py regions A and B but only weakly to region C. This weak binding on region C was surprising because this region contains four tandem repeats of GPuGGC, the canonical pentanucleotide sequence thought to be involved in specific binding by T antigens. On SV40 DNA, SV40 T antigen displayed its characteristic hierarchy of affinities, binding most efficiently to site 1 and less efficiently to site 2. Binding to site 3 was undetectable under these conditions. In contrast, Py T antigen, despite an overall relative reduction of affinity for SV40 DNA, binds equally to fragments containing each of the three SV40 binding sites. Py T antigen, but not SV40 T antigen, also bound specifically to a region of human Alu DNA which bears a remarkable homology to SV40 site 1. However, both tumor antigens fail to precipitate DNA from the same region which has two direct repeats of GAGGC. These results indicate that despite similarities in protein structure and DNA sequence, requirements of the two T antigens for pentanucleotide configuration and neighboring sequence environment are different.  相似文献   

7.
D McVey  B Woelker    P Tegtmeyer 《Journal of virology》1996,70(6):3887-3893
Previous studies have shown that phosphorylation of simian virus 40 (SV40) T antigen at threonine 124 enhances the binding of T antigen to the SV40 core origin of replication and the unwinding of the core origin DNA via hexamer-hexamer interactions. Here, we report that threonine 124 phosphorylation enhances the interaction of T-antigen amino acids 1 to 259 and 89 to 259 with the core origin of replication. Phosphorylation, therefore, activates the minimal DNA binding domain of T antigen even in the absence of domains required for hexamer formation. Activation is mediated by only one of three DNA binding elements in the minimal DNA binding domain of T antigen. This element, including amino acids 167, 215, and 219, enhances binding to the unique arrangement of four pentanucleotides in the core origin but not to other pentanucleotide arrangements found in ancillary regions of the SV40 origin of replication. Interestingly, the same four pentanucleotides in the core origin are necessary and sufficient for phosphorylation-enhanced DNA binding. Further, we show that phosphorylation of threonine 124 promotes the assembly of high-order complexes of the minimal DNA binding domain of T antigen with core origin DNA. We propose that phosphorylation induces conformational shifts in the minimal DNA binding domain of T antigen and thereby enhances interactions among T-antigen subunits oriented by core origin pentanucleotides. Similar subunit interactions would enhance both assembly of full-length T antigen into binary hexamer complexes and origin unwinding.  相似文献   

8.
Essential nucleotide contacts between the polyomavirus large T antigen and its multiple specific binding regions within the regulatory sequences of the polyomavirus genome were determined in vitro by methylation interference. Methylation of any of the guanine residues of the 5'-G(A/G)GGC-3' pentanucleotide repeats in large-T-antigen-binding regions A, B, C, and 3 (A. Cowie and R. Kamen, J. Virol. 52:750-760, 1984) interfered with T antigen binding. Within regions A, B, and C these pentanucleotides are spaced 5 or 6 base pairs apart. Therefore, the clusters of contacted nucleotides within each of these binding regions are localized along one face of the DNA helix. Methylation of guanines within the sequences between the pentanucleotide repeats did not interfere with binding. The ORI binding region contains four additional pentanucleotide sequences within a region of dyad symmetry. Methylation of only particular guanines of these pentanucleotides interfered with T antigen binding. The spatial arrangement of the pentanucleotides in the ORI is such that the clusters of contacted guanines are situated around the DNA helix, thereby forming a very different arrangement from that found in the other binding regions. A model is discussed in which cooperative interactions between T antigen protomers, recognizing individual pentanucleotides, determines the strength and the function of different T antigen-DNA interactions.  相似文献   

9.
10.
DNA binding regions I, II, and III at the origin of replication have different arrangements of A protein (T antigen) recognition pentanucleotides. The A protein also protects each region from DNase in distinctly different patterns. Footprint and fragment assays led to the following conclusions: (i) in some cases a single recognition pentanucleotide is sufficient to direct the binding and accurate alignment of A protein on DNA; (ii) the A protein binds within isolated region I or II in a sequential process leading to multiple overlapping areas of DNase protection within each region; and (iii) the 23-base pair span of recognition sequences in region II allows binding and protection of a longer length of DNA than the 23-base pair span in region I. We propose a model of protein binding that addresses the problem of variations in the arrangement of pentanucleotides in regions I and II and explains the observed DNase protection patterns. The central feature of the model requires each protomer of A protein to bind to a pentanucleotide in a unique direction. The resulting orientation of protein would protect more DNA at the 5' end of the 5'-GAGGC-3' recognition sequence than at the 3' end. The arrangement of multiple protomers at the origin of simian virus 40 replication is discussed.  相似文献   

11.
The simian virus 40 origin of replication contains a 27-base-pair palindrome with the sequence 5'-CA-GAGGC-C-GAGGC-G-GCCTC-G-GCCTC-TG-3'. The four 5'-GAGGC-3'/5'-GCCTC-3' pentanucleotides are known contact sites for simian virus 40 T-antigen binding in vitro. We used oligonucleotide-directed cassette mutagenesis to identify features of this palindrome that are important for the initiation of DNA replication in vivo. Each base pair of a pentanucleotide is crucial for DNA replication. In contrast, sequences adjacent to pentanucleotides have little or no effect on replication. Thus, the pentanucleotide is the basic functional unit, not only for T-antigen binding but also for DNA replication. All four pentanucleotides are indispensable in the initiation process. The spacing of pentanucleotides is crucial because duplication of the single base pair between binding sites has a far greater effect on replication than does substitution of the same base pair. Inversion of any pentanucleotide blocks DNA synthesis. Thus, the pentanucleotide is not a functionally symmetrical unit. We propose that each pentanucleotide positions a monomer of T antigen at the proper distance, rotation, and orientation relative to other T-antigen monomers and to other origin domains and that such positioning leads to subsequent events in replication.  相似文献   

12.
Previous studies with wild-type simian virus 40 DNA have shown that the sequence 5'-GAGGC-3' directs the binding of A protein (T antigen). The functional origin of replication contains four recognition pentanucleotides each of which is separated by a single base pair and arranged a two pairs of direct repetitions that are inverted relative to each other. Analysis of A protein binding to a series of nonviable mutants progressively deleting these contact sites leads to the following conclusions: (i) stable binding of subunits of A protein to three origin pentanucleotides is not sufficient for the initiation of DNA replication, (ii) the stability of DNA binding depends on interactions between bound protein subunits, and (iii) a single pentanucleotide is sufficient to bind and orient a subunit of A protein.  相似文献   

13.
14.
The simian virus 40 (SV40) core origin of replication consists of three functional domains. The sequence 5'-CACTACTTCTGGAATAG-3' with an imperfect inverted repeat (underlined), a palindrome with four 5'-GAGGC-3' pentanucleotide repeats, and a 17-base-pair A + T-rich segment. We have been able to assign primary functions to each domain. Remarkably, SV40 large T antigen melted the inverted repeat domain in the complete absence of other origin sequences. Presumably, this protein-DNA interaction initiates a replication bubble that leads to daughter strand DNA synthesis. The pentanucleotide domain alone docked and arranged T antigen at the origin. The A + T-rich domain had no independent function, but, in the presence of the other two domains, allowed bound T antigen to extend the replication bubble. Thus, three domains of the origin coordinate the binding, melting, and DNA helicase activities of T antigen in an ordered sequence of events to initiate DNA replication.  相似文献   

15.
Using subfragments of the simian virus 40 (SV40) core origin, we demonstrate that two alternative modules exist for the assembly of T-antigen (T-ag) double hexamers. Pentanucleotides 1 and 3 and the early palindrome (EP) constitute one assembly unit, while pentanucleotides 2 and 4 and the AT-rich region constitute a second, relatively weak, assembly unit. Related studies indicate that on the unit made up of pentanucleotide 1 and 3 and the EP assembly unit, the first hexamer forms on pentanucleotide 1 and that owing to additional protein-DNA and protein-protein interactions, the second hexamer is able to form on pentanucleotide 3. Oligomerization on the unit made up of pentanucleotide 2 and 4 and the AT-rich region is initiated by assembly of a hexamer on pentanucleotide 4; subsequent formation of the second hexamer takes place on pentanucleotide 2. Given that oligomerization on the SV40 origin is limited to double-hexamer formation, it is likely that only a single module is used for the initial assembly of T-ag double hexamers. Finally, we discuss the evidence that nucleotide hydrolysis is required for the remodeling events that result in the utilization of the second assembly unit.  相似文献   

16.
The regions of the simian virus 40 (SV40) core origin that are required for stable assembly of virally encoded T antigen (T-ag) and the T-ag origin binding domain (T-ag-obd(131-260)) have been determined. Binding of the purified T-ag-obd(131-260) is mediated by interactions with the central region of the core origin, site II. In contrast, T-ag binding and hexamer assembly requires a larger region of the core origin that includes both site II and an additional fragment of DNA that may be positioned on either side of site II. These studies indicate that in the context of T-ag, the origin binding domain can engage the pentanucleotides in site II only if a second region of T-ag interacts with one of the flanking sequences. The requirements for T-ag double-hexamer assembly are complex; the nucleotide cofactor present in the reaction modulates the sequence requirements for oligomerization. Nevertheless, these experiments provide additional evidence that only a subset of the SV40 core origin is required for assembly of T-ag double hexamers.  相似文献   

17.
Simian virus 40 (SV40) large tumor antigen (T antigen) possesses several biochemical activities localized in different domains of the protein. These activities include sequence-specific binding to two major sites, I and II, in the SV40 control region, ATPase, and nucleotide-binding activity. In the present communication, we present evidence that specific binding of immunopurified T antigen to SV40 DNA is markedly inhibited by low concentrations of ATP, dATP, GTP, and dGTP. The inhibition is reversible after removal of the nucleotide, suggesting that simple nucleotide binding rather than a covalent modification of T antigen in the presence of ATP is responsible for the inhibition. The results suggest that T antigen may assume two conformations, one active and one inactive in binding to the SV40 origin of replication. In the presence of purine nucleoside triphosphates, the inactive conformation is favored.  相似文献   

18.
Initiation of simian virus 40 (SV40) DNA replication is dependent upon the assembly of two T-antigen (T-ag) hexamers on the SV40 core origin. To further define the oligomerization mechanism, the pentanucleotide requirements for T-ag assembly were investigated. Here, we demonstrate that individual pentanucleotides support hexamer formation, while particular pairs of pentanucleotides suffice for the assembly of T-ag double hexamers. Related studies demonstrate that T-ag double hexamers formed on “active pairs” of pentanucleotides catalyze a set of previously described structural distortions within the core origin. For the four-pentanucleotide-containing wild-type SV40 core origin, footprinting experiments indicate that T-ag double hexamers prefer to bind to pentanucleotides 1 and 3. Collectively, these experiments demonstrate that only two of the four pentanucleotides in the core origin are necessary for T-ag assembly and the induction of structural changes in the core origin. Since all four pentanucleotides in the wild-type origin are necessary for extensive DNA unwinding, we concluded that the second pair of pentanucleotides is required at a step subsequent to the initial assembly process.  相似文献   

19.
SV40 T antigen exists in monomeric and multimeric forms. We have separated the individual components by glycerol gradient centrifugation. Helicase activity is found to be associated with monomeric forms only. Dimers and other multimeric forms have no discernable helicase activity. However, results obtained from DNA binding experiments carried out with separated forms of T antigen indicate that both monomers and dimers bind to region I and region II of SV40 origin of replication. Possibly monomeric T antigen unwinds DNA at the replication fork while both monomeric and dimeric forms are utilized for positioning of T antigen at the origin of replication.  相似文献   

20.
The simian virus 40 A protein (T antigen) recognized and bound to the consensus sequence 5'-GAGGC-3' in DNA from many sources. Sequence-specific binding to single pentanucleotides in randomly chosen DNA predominated over binding to nonspecific sequences. The asymmetric orientation of protein bound to nonorigin recognition sequences also resembled that of protein bound to the origin region of simian virus 40 DNA. Sequence variations in the DNA adjacent to single pentanucleotides influenced binding affinities even though methylation interference and protection studies did not reveal specific interactions outside of pentanucleotides. Thus, potential locations of A protein bound to any DNA can be predicted although the determinants of binding affinity are not yet understood. Sequence-specific binding of A protein to cellular DNA would provide a mechanism for specific alterations of host gene expression that facilitate viral function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号