首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Although glutamine is used as a major substrate for the growth of mammalian cells in culture, it suffers from some disadvantages. Glutamine is deaminated through storage or by cellular metabolism, leading to the formation of ammonia which can result in growth inhibition. Non-ammoniagenic alternatives to glutamine have been investigated in an attempt to develop strategies for obtaining improved cell yields for ammonia sensitive cell lines.Glutamate is a suitable substitute for glutamine in some culture systems. A period of adaptation to glutamate is required during which the activity of glutamine synthetase and the rate of transport of glutamate both increase. The cell yield increases when the ammonia accumulation is decreased following culture supplementation with glutamate rather than glutamine. However some cell lines fail to adapt to growth in glutamate and this may be due to a low efficiency transport system.The glutamine-based dipeptides, ala-gln and gly-gln can substitute for glutamine in cultures of antibody-secreting hybridomas. The accumulation of ammonia in these cultures is less and cell yields in dipeptide-based media may be improved compared to glutamine-based controls. In murine hybridomas, a higher concentration of gly-gln is required to obtain comparable cell growth to ala-gln or gln-based cultures. This is attributed to a requirement for dipeptide hydrolysis catalyzed by an enzyme with higher affinity for ala-gln than gly-gln.  相似文献   

9.
Adaptation of mammalian cells to growth in serum-free media   总被引:5,自引:0,他引:5  
A three-step protocol is described for adapting an anchorage-dependent, serum-dependent recombinant mammalian cell lineage to high density serum-free suspension culture. The objective is a cell lineage that is well-suited for the manufacture of a recombinant protein. The first step of the protocol generates an anchorage-independent cell lineage by culturing trypsin-treated cells in spinner flasks using serum-containing medium. The second step adapts the lineage to serum-free medium through a series of serum reduction steps in the presence of defined growth-promoting additives. The third step adapts the lineage to high-cell-density conditions by culturing the cells in a bioreactor in a manner that allows development of tolerance to growth-inhibiting substances released by the cells. Examples are presented for the use of this protocol for recombinant CHO cells.  相似文献   

10.
11.
Survival of V-79 Chinese hamster cells was assessed by colony growth assay after hypothermic exposure in the presence of iron chelators. At 5 degrees C, maximum protection from hypothermic damage was achieved with a 50 microM concentration of the intracellular ferric iron chelator Desferal. A 3-hr prehypothermic incubation with 50 microM Desferal followed by replacement with chelator-free medium at 5 degrees C also provided some protection. This was not observed when the extracellular chelator DETA-PAC (50 microM) was used prior to cold storage. Treating 5 degrees C-stored cells with Desferal just prior to rewarming was ineffective, but treating cells with Desferal during hypothermia exposure after a significant period of unprotected cold exposure ultimately increased the surviving fraction. Submaximal protection during hypothermia was achieved to various degrees with extracellular chelators at 5 degrees C, including 50 microM DETAPAC and 110 microM EDTA. EGTA (110 microM) had little effect. The sensitization of cells at 5 degrees C with 200 microM FeCl3 could be reduced or eliminated with Desferal in accordance with a 1:1 binding ratio. At 10 degrees C, 50 microM Desferal, 50 microM DETAPAC, and 110 microM EDTA were as or less effective in protecting cells than at 5 degrees C. An Arrhenius plot of cell inactivation rates shows a break at 7-8 degrees C, corresponding to maximum survival for control cells and cells in 50 microM Desferal; however, the amount of protection offered by the chelator increases with decreasing temperature below about 19 degrees C, and sensitization increases above that point. It has not previously been shown that iron chelators protect against cellular hypothermia damage which is uncomplicated by previous or simultaneous ischemia. This may be relevant to the low-temperature storage of transplant organs, in which iron of intracellular origin and in the perfusate may be active and damaging.  相似文献   

12.
Persistently cold environments constitute one of our world's largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of light absorption and photochemistry with temperature-dependent processes of electron transport and utilization of energy sources through growth and metabolism. Despite this conundrum, phototrophic microorganisms thrive in all cold ecosystems described and (together with chemoautrophs) provide the base of autotrophic production in low-temperature food webs. Psychrophilic (organisms with a requirement for low growth temperatures) and psychrotolerant (organisms tolerant of low growth temperatures) photoautotrophs rely on low-temperature acclimative and adaptive strategies that have been described for other low-temperature-adapted heterotrophic organisms, such as cold-active proteins and maintenance of membrane fluidity. In addition, photoautrophic organisms possess other strategies to balance the absorption of light and the transduction of light energy to stored chemical energy products (NADPH and ATP) with downstream consumption of photosynthetically derived energy products at low temperatures. Lastly, differential adaptive and acclimative mechanisms exist in phototrophic microorganisms residing in low-temperature environments that are exposed to constant low-light environments versus high-light- and high-UV-exposed phototrophic assemblages.  相似文献   

13.
14.
Many mammalian mitochondrial aminoacyl-tRNA synthetases are of bacterial-type and share structural domains with homologous bacterial enzymes of the same specificity. Despite this high similarity, synthetases from bacteria are known for their inability to aminoacylate mitochondrial tRNAs, while mitochondrial enzymes do aminoacylate bacterial tRNAs. Here, the reasons for non-aminoacylation by a bacterial enzyme of a mitochondrial tRNA have been explored. A mutagenic analysis performed on in vitro transcribed human mitochondrial tRNAAsp variants tested for their ability to become aspartylated by Escherichia coli aspartyl-tRNA synthetase, reveals that full conversion cannot be achieved on the basis of the currently established tRNA/synthetase recognition rules. Integration of the full set of aspartylation identity elements and stabilization of the structural tRNA scaffold by restoration of D- and T-loop interactions, enable only a partial gain in aspartylation efficiency. The sequence context and high structural instability of the mitochondrial tRNA are additional features hindering optimal adaptation of the tRNA to the bacterial enzyme. Our data support the hypothesis that non-aminoacylation of mitochondrial tRNAs by bacterial synthetases is linked to the large sequence and structural relaxation of the organelle encoded tRNAs, itself a consequence of the high rate of mitochondrial genome divergence.  相似文献   

15.
Butylated hydroxytoluene (BHT), an antioxidant and common food additive, is an organic soluble molecule which modifies the properties of lipid bilayers and biological membranes. Adamantane and its derivatives, although structurally quite different, have similar effects on membranes. When Chinese hamster lung cells (V79) were pretreated with 0.1 mm BHT before exposure to +5 °C for up to 12 days in suspension culture or attached to plastic, significant protection, as assessed by colony survival, was observed compared to controls. No protection was observed when the cells were exposed to +20 °C. Use of adamantane or 2-adamantanone in serum-free medium in suspension culture at +5 °C showed protection of cells as good as, or better than, that provided by the addition of serum to control cells. Experiments with synchronized cells indicated that BHT protected cells in all phases of the cell cycle against the effects of exposure to +5 °C. However, the protection was greatest in G1 and early S phase. Exposure of cells containing BHT to +20 °C resulted in no preferential protection in any phase of the cell cycle.  相似文献   

16.
17.
18.
Saffold viruses (SAFV) are a recently discovered group of human Cardioviruses closely related to Theiler's murine encephalomyelitis viruses (TMEV). Unlike TMEV and encephalomyocarditis virus, each of which is monotypic, SAFV are genetically diverse and include at least eight genotypes. To date, only Saffold virus 3 (SAFV-3) has been grown efficiently in mammalian cells in vitro. Here, we report the successful adaptation of SAFV-2 for efficient growth in HeLa cells after 13 passages in the alpha/beta interferon-deficient human glial cell line U118 MG. Nine amino acid changes were found in the adapted virus, with single mutations in VP2, VP3, and 2B, while 6 mutations arose in VP1. Most capsid mutations were in surface loops. Analysis of SAFV-2 revealed virus growth and cytopathic effect only in human cell lines, with large plaques forming in HeLa cells, with minimal cell association, and without using sialic acid to enter cells. Despite the limited growth of SAFV-2 in rodent cells in vitro, BALB/c mice inoculated with SAFV-2 showed antibody titers of >1:10(6), and fluorescence-activated cell sorting (FACS) analysis revealed only minimal cross-reactivity with SFV-3. Intracerebral inoculation of 6-week-old FVB/n mice produced paralysis and acute neuropathological changes, including meningeal infiltrates, encephalitis, particularly of the limbic system, and spinal cord white matter inflammation.  相似文献   

19.
Two types with regard to adaptation to different light intensities are described: tbe Chlorella type and the Cyclotella type. The Chlorella type is mostly found among the green algae, the Cyclotella type among the diatoms. The Chlorella type adapts to a new light intensity mainly by changing the pigment content. Therefore the cells adapted to a high light intensity have a lower chlorophyll a content per cell than cells adapted to a low light intensity. Light saturation is mostly rather low for cells adapted to low light intensities. The light-saturated rate of photosynthesisist mostly lower for cells adapted to a high light intensity than for cells adapted to a low light intensity. The actual photosynthesis is not much higher at a high light intensity than at a low one. The actual photosynthesis is the photosynthesis at the light intensity where the cells are grown. - The Cyclotella type adapts only by changing the light-saturated rate. The chlorophyll content is the same in cells grown at low and high light intensities. Light saturation for cells grown at a low light intensity is rather high. The light-saturated rate is much higher in the case examined at the high light intensity than at the low one. The actual photosynthesis is considerably higher for cells grown at the high light intensities than for cells grown at low light intensities.- The two adaptation types are not sharply separated since transition types occur.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号