首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of phosphorylation of P-glycoprotein on multidrug resistance   总被引:2,自引:0,他引:2  
Cells expressing elevated levels of the membrane phosphoprotein P-glycoprotein exhibit a multidrug resistance phenotype. Studies involving protein kinase activators and inhibitors have implied that covalent modification of P-glycoprotein by phosphorylation may modulate its biological activity as a multidrug transporter. Most of these reagents, however, have additional mechanisms of action and may alter drug accumulation within multidrug resistant cells independent of, or in addition to their effects on the state of phosphorylation of P-glycoprotein. The protein kinase(s) responsible for P-glycoprotein phosphorylation has(ve) not been unambiguously identified, although several possible candidates have been suggested. Recent biochemical analyses demonstrate that the major sites of phosphorylation are clustered within the linker region that connects the two homologous halves of P-glycoprotein. Mutational analyses have been initiated to confirm this finding. Preliminary data obtained from phosphorylation- and dephosphorylation-defective mutants suggest that phosphorylation of P-glycoprotein is not essential to confer multidrug resistance.  相似文献   

2.
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Ligand-dependent changes in accessibility of purified P-glycoprotein, functionally reconstituted in liposomes, were investigated by fluorescence measurements. Trp quenching experiments provided evidence that P-glycoprotein adopts different tertiary structures upon binding of drug substrates in the absence and presence of MgATP and its nonhydrolyzable analog, MgATPgammaS. Five anthracycline derivatives were tested as drug substrates: daunorubicin, 4'-epi-doxorubicin, iododoxorubicin, 4-demethoxy-daunorubicin, and methoxy-morpholino-doxorubicin. Among them, daunorubicin and 4'-epi-doxorubicin have been shown to be rejected outside the multidrug-resistant cells, whereas the three others have been shown to accumulate in multidrug-resistant cells overexpressing P-glycoprotein and therefore retain their cytotoxic activity. A small conformational change was associated with nucleotide binding and amplified after nucleotide hydrolysis. Different conformational states were adopted by P-glycoprotein upon the addition of the anthracycline derivatives in the absence and presence of MgATP or MgATPgammaS. These conformational changes are shown to be related to the nature of the antitumor agents and more precisely to their capacity to accumulate in resistant cells. These data also suggest that the cytotoxicity of iododoxorubicin and 4-demethoxy-daunorubicin is related to the fact they are not transported by P-glycoprotein. On the contrary, methoxy-morpholino-doxorubicin cytotoxicity may be explained in terms of its rapid reincorporation into the plasma membrane after being transported by P-glycoprotein.  相似文献   

4.
MDR1基因多态性及其临床相关性研究进展   总被引:2,自引:0,他引:2  
李艳红  王永华  李燕  杨凌 《遗传学报》2006,33(2):93-104
体内外研究证明,人体中P—gP在药物的吸收、分布、代谢和排泄(ADME)过程中发挥了非常重要的作用。多药耐药基因MDR1(ABCB1)是P-gP的编码基因。药物基因组学和遗传药理学研究发现在不同个体中MDR1基因多态性与P—gP表达和功能的改变密切相关,而且这些多态位点存在基因型分布和等位基因频率的种族差异性。近几年,已陆续发现在MDR1基因中有50处单核苷酸多态性(SNPs)和3处插入与缺失多态性。随后,大量文献报道某些位点的SNPs如C3435T会使个体患病的易感性增加。因此人们相信,深入研究MDR1基因多态性与P—gP的生理和生化方面的相关性将对个体医疗有着非常深远的意义。文章总结了国外最新的研究进展并结合本实验室的工作着重讨论了4个方面:1)P—gP对药代动力学性质的影响:2)MDR1基因多态性及其对遗传药理学性质的影响;3)MDR1^C3435T的单核苷酸多态性与P-gP表达和功能之间的相关性:4)MDR1基因多态性与人类某些疾病之间的相关性。  相似文献   

5.
The multidrug resistance gene product, P-glycoprotein or the multidrug transporter, confers multidrug resistance to cancer cells by maintaining intracellular levels of cytotoxic agents below a killing threshold. P-glycoprotein is located within the plasma membrane and is thought to act as an energy-dependent drug efflux pump. The multidrug transporter represents a member of the ATP-binding cassette superfamily of transporters (or traffic ATPases) and is composed of two highly homologous halves, each of which harbors a hydrophobic transmembrane domain and a hydrophilic ATP-binding fold. This review focuses on various biochemical and molecular genetic approaches used to analyze the structure, function, and mechanism of action of the multidrug transporter, whose most intriguing feature is its ability to interact with a large number of structurally and functionally different amphiphilic compounds. These studies have underscored the complexity of this membrane protein which has recently been suggested to assume alternative topological and quaternary structures, and to serve multiple functions both as a transporter and as a channel. With respect to the multidrug transporter activity of P-glycoprotein, progress has been made towards the elucidation of essential amino acid residues and/or polypeptide regions. Furthermore, the drug-stimulatable ATPase activity of P-glycoprotein has been established. The mechanism of drug transport by P-glycoprotein, however, is still unknown and its physiological role remains a matter of speculation.  相似文献   

6.
The MDR1 multidrug resistance gene encodes a high molecular weight membrane-spanning cell surface protein, P-glycoprotein, that confers multidrug resistance by pumping various cytotoxic drugs, including vinblastine, doxorubicin or paclitaxel, out of cells. Overexpression of P-glycoprotein in human tumors has been recognized as a major obstacle for successful chemotherapy of cancer. Thus, P-glycoprotein represents an important drug target for pharmacological chemosensitizers. Initially, cell culture models to study the multidrug resistance phenotype were established by selecting drug-sensitive cells in step-wise increasing, sublethal concentrations of chemotherapy agents. P-glycoprotein was found to be overexpressed in many of these models. Multidrug resistant cells can also be generated by transfection of cultured cells with the MDR1 gene, followed by selection with cytotoxic drug at a concentration that kills all untransfected host cells. Transfectants expressing wild-type or mutant recombinant P-glycoprotein have significantly contributed to our understanding of the structure of P-glycoprotein and its molecular and cellular functions. Additionally, the MDR1 gene has also been used as a selectable marker for the transfer and coexpression of non-selectable genes. This article details means for detection of P-glycoprotein in DNA-transfected or retrovirally transduced, cultured cells. Different experimental approaches are described that make use of specific antibodies for detection of P-glycoprotein. Strategies to visualize P-glycoprotein include metabolic labeling using 35S-methionine, labeling with a radioactive photoaffinity analog, and non-radioactive immunostaining after Western blotting.  相似文献   

7.
170-180-kDa membrane glycoprotein (P-glycoprotein) associated with multidrug resistance is involved in drug transport mechanisms across the plasma membrane of resistant cells. From sequence analysis of cDNAs of the P-glycoprotein gene, it is postulated that the active drug-efflux pump function may be attributable to the protein. However, purification of the P-glycoprotein while preserving its enzymatic activity has not been reported. In this study, we have purified the P-glycoprotein from the human myelogenous leukemia K562 cell line resistant to adriamycin (K562/ADM) by means of one-step immunoaffinity chromatography using a monoclonal antibody against P-glycoprotein. The procedure was simple and efficiently yielded an electrophoretically homogeneous P-glycoprotein sample. By solubilization with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, the purified P-glycoprotein was found to have ATPase activity. This ATP hydrolysis may be coupled with the active efflux of anticancer drugs across the plasma membrane of multidrug-resistant cells.  相似文献   

8.
Gottesman MM  Ling V 《FEBS letters》2006,580(4):998-1009
The discovery and characterization of P-glycoprotein, an energy-dependent multidrug efflux pump, as a mechanism of multidrug resistance in cancer is generally accepted as a significant contribution to the ongoing effort to end death and suffering from this disease. The historical reflections of Victor Ling and Michael Gottesman concerning the early years of this research highlight the important contributions of the multidisciplinary teams involved in these studies, and illustrate how technological developments in biochemistry and molecular and cell biology enabled this discovery.  相似文献   

9.
In higher vertebrates, P-glycoprotein is usually encoded by a small family of genes. We have determined that the rat contains three P-glycoprotein genes and have cloned distinct genomic fragments containing the putative 3' untranslated regions of these P-glycoprotein genes. Sequence analysis indicates that the rat P-glycoprotein genes belong to the three P-glycoprotein classes identified in mammals. These cloned sequences will be useful for delineating the expression of P-glycoprotein genes in the rat. We have also isolated a fourth clone which contains only a short, but highly conserved P-glycoprotein domain. This clone appears not be a member of the P-glycoprotein gene family, and its relationship to P-glycoprotein is unknown.  相似文献   

10.
P-glycoprotein has a widespread expression on normal tissues. The protein has also been strongly associated with the multidrug resistance phenotype (MDR) on tumor cells. The employment of flow cytometry and confocal microscopy has contributed to the discovery and application of new particular fluorescent dyes. Nevertheless, several studies are being performed in different cellular types neglecting the expression/activity of MDR proteins. Because many fluorochromes have been reported as P-glycoprotein substrates, an especial attention must be given to the properties of new dyes in the presence of MDR proteins. Flow cytometric analyzes of Mitotracker Green (MTG) fluorescence profile were performed in a human erythroleukemic cell line and its resistant counterpart. In this report we demonstrated that MTG, a probe used to evaluate the mitochondrial mass, is a P-glycoprotein substrate and its staining profile is dependent on the activity of this protein. In vitro studies on a human erythroleukemic cell line and its resistant counterpart revealed that MDR modulators (Cyclosporin A, Verapamil, and Trifluoperazine) alter the MTG fluorescence pattern on a resistant cell line. The findings suggest that attention should be given to the expression of P-glycoprotein when performing an evaluation of mitochondria properties with MTG.  相似文献   

11.
Multidrug resistance in cancer chemotherapy frequently correlates with overexpression of the P-glycoprotein drug transporter. Attempts to reverse P-glycoprotein-mediated multidrug resistance with racemic verapamil or its less toxic (R)-enantiomer have been complicated by cardiotoxicity. The objective of this study was to investigate the effects of the major verapamil metabolite, norverapamil, as well as the PR-22 and D-620 metabolites, on P-glycoprotein-mediated drug transport. We measured the basolateral-to-apical fluxes of the P-glycoprotein substrates digoxin and vinblastine in the presence and absence of verapamil, (R)-norverapamil, (S)-norverapamil, racemic norverapamil, PR-22, or D-620 across confluent monolayers of Madin-Darby canine kidney (MDCK) cells that express P-glycoprotein on their apical membranes. Verapamil and norverapamil nonstereospecifically inhibited the renal tubular secretion of digoxin and vinblastine similarly in a dose-dependent manner. However, there was no decrease in the cellular accumulation of digoxin and vinblastine, suggesting that neither verapamil nor norverapamil prevent the substrates from entering the MDCK cells. Furthermore, the norverapamil metabolite P-22 also inhibited the secretion of these P-glycoprotein substrates. Our results suggest that the verapamil metabolites norverapamil and PR-22, which are less cardiotoxic than the parent compound, have comparable inhibitory abilities to verapamil (norverapamil greater than PR-22) and may be useful in reversing resistance to P-glycoprotein substrates.  相似文献   

12.

Background  

P-glycoprotein belongs to the family of ATP-binding cassette proteins which hydrolyze ATP to catalyse the translocation of their substrates through membranes. This protein extrudes a large range of components out of cells, especially therapeutic agents causing a phenomenon known as multidrug resistance. Because of its clinical interest, its activity and transport function have been largely characterized by various biochemical studies. In the absence of a high-resolution structure of P-glycoprotein, homology modeling is a useful tool to help interpretation of experimental data and potentially guide experimental studies.  相似文献   

13.
Chloroquine has been the mainstay of antimalarial chemotherapy but the rapid spread of resistance to this important drug has now compromised its efficacy. The mechanism of chloroquine resistance has not been known but recent evidence from Plasmodium falciparum, the causative agent of the most severe form of human malaria, suggested similarities to the multidrug resistance phenotype (MDR) of mammalian tumour cells which is mediated by a protein molecule termed P-glycoprotein. Two mdr genes (pfmdr1 and pfmdr2) encoding P-glycoprotein homologues have been identified in P. falciparum and one of these (pfmdr1) has several alleles that have been linked to the chloroquine resistance phenotype. In contrast analysis of a genetic cross between chloroquine-resistant and -sensitive P. falciparum has suggested that the genes encoding the known P-glycoprotein homologues are not linked. This review outlines the similarities of the chloroquine resistance phenotype with the MDR phenotype of mammalian tumour cells and explores the possible role of the pfmdr genes.  相似文献   

14.
Summary The presence of volume-activated chloride channels has been examined in neuroblastoma C1300 cells using the whole-cell configuration of the patch-clamp technique. Chloride channels could not be detected under isotonic conditions. However, hypotonic challenge induced slowly developed inward and outward anionic currents that exhibited outward rectification and inactivation at the most depolarizing potentials, features that were similar to the currents described in other cell preparations where volume-activated Cl channels have been associated with the expression of P-glycoprotein. This hypotonicity-activated Cl currents could be reversibly blocked by extracellular exposure to toremifene, a novel synthetic antioestrogen. The fact that toremifene and its analog tamoxifen, have been shown to block P-glycoprotein-associated chloride channels and to reverse P-glycoprotein associated multidrug resistance in a number of cell lines suggest that P-glycoprotein could be involved in the generation of hypotomic-induced chloride conductance in neuroblastoma cells.  相似文献   

15.
The brain distribution of the enantiomers of the antimalarial drug mefloquine is stereoselective according to the species. This stereoselectivity may be related to species-specific differences in the properties of some membrane-bound transport proteins, such as P-glycoprotein (P-gp). The interactions of racemic mefloquine and its individual enantiomers with the P-glycoprotein efflux transport system have been analysed in immortalised rat brain capillary endothelial GPNT cells. Parallel studies were carried out for comparison in human colon carcinoma Caco-2 cells. The cellular accumulation of the P-glycoprotein substrate, [(3)H]vinblastine, was significantly increased both in GPNT cells and in Caco-2 cells when treated with racemic mefloquine and the individual enantiomers. In GPNT cells, the (+)-stereoisomer of mefloquine was up to 8-fold more effective than its antipode in increasing cellular accumulation of [(3)H]vinblastine, while in Caco-2 cells, both enantiomers were equally effective. These results suggest that racemic mefloquine and its enantiomers are effective inhibitors of P-gp. Furthermore, a stereoselective P-glycoprotein inhibition is observed in rat cells but not in human cells. The efflux of [(14)C]mefloquine from GPNT cells was decreased when the cells were incubated with the P-gp modulators, verapamil, cyclosporin A or chlorpromazine, suggesting that MQ could be a P-gp substrate.  相似文献   

16.
In vivo and in vitro studies have demonstrated that P-glycoprotein (P-gp) plays a very significant role in the ADME processes (absorption, distribution, metabolism, excretion) and drug-drug interaction (DDI) of drugs in humans. P-gp is the product of multidrug resistance gene (MDR1/ABCB1). Pharmacogenomics and pharmacogenetics studies have revealed that genetic polymorphisms of MDR1 are associated with alteration in P-gp expression and function in different ethnicities and subjects. By now, 50 single nucleotide polymorphisms (SNPs) and 3 insertion/deletion polymorphisms have been found in the MDR1 gene. Some of them, such as C3435T, have been identified to be a risk factor for numerous diseases. It is believed that further understanding of the physiology and biochemistry of P-gp with respect to its genetic variations may be important for individualized pharmacotherapy. Therefore, based on the latest public information and our studies, this review focuses on the following four aspects: 1) the impact of P-gp on pharmacokinetics; 2) MDR1 genetic polymorphisms and their impacts on pharmacogenetics; 3) relationship between altered P-gp expression and function and the MDR1C3435T SNP, and 4) relevance of MDR1 polymorphisms to certain human diseases.  相似文献   

17.
In mammals, P-glycoprotein immunostaining at the blood–brain barrier has implicated the multidrug pump in the restricted movement of many cytotoxic agents into the central nervous system (NCS). Since many insects require as sophisticated blood–brain barrier system to protect their CNS from plant-derived neurotoxins, we have investigated the possibility that a P-glycoprotein homolog constitutes a component of the insect blood–brain barrier. We have used the nicotine-resistant tobacco hornworm (Manduca sexta) to address this issue. Manduca has been previously shown, in physiological studies, to have an alkaloid (nicotine/morphine/atropine) pump at its excretory malpighian tubules. We show (1) that the tubules are P-glycoprotein immunopositive, (2) that Manduca has a metabolic blood–brain barrier for nicotine, (3) that the barrier co-localizes with P-glycoprotein immunostaining, and (4) that detoxifying enzymes as well as the nicotine pump are likely to account for the metabolic blood–brain to nicotine. These findings may provide insights on two major fronts, the troublesome problem of multi-insecticide resistance, a phenomenon that parallels multidrug resistance in tumor cells, and the problem of tolerance to addictive neuroactive drugs like nicotine or morphine. 1994 John Wiley & Sons, Inc.  相似文献   

18.
Summary The distribution of P-glycoprotein in human placenta has been examined by immunohistochemistry using a battery of monoclonal antibodies (MRK-16, C219 and JSB-1). P-glycoprotein was located on the syncytiotrophoblast microvillus border in first-trimester placentas and some of the placental macrophages (Hofbauer cells) showed weak cytoplasmic staining. In term placentas, however, staining was not observed in the trophoblast but most of the Hofbauer cells displayed strong cytoplasmic staining. In situ hybridization with specific gene probes suggested that both human multidrug resistance genes were expressed in the placenta, although only the multidrug resistance-1 gene product would have been detected by the MRK and JSB-1 antibodies. These results point to distinct functions for P-glycoprotein during the different stages of placental development and indicate that its expression may be under developmental control.  相似文献   

19.
Multidrug-resistance of human cancer cells may result from expression of a 170,000 dalton multidrug efflux pump called P-glycoprotein. To identify this multidrug transporter, and to study its structure and function, we have generated polyclonal rabbit antibodies against the amino-terminal and carboxy-terminal halves of the molecule using recombinant protein fragments produced in Escherichia coli. Two recombinant P-glycoprotein fragments, representing amino acids 140-228 and 919-1280, were overproduced in Escherichia coli by an inducible T7 expression system, gel-purified and injected into rabbits. Both antisera specifically immunoprecipitate 3H-azidopine and 35S-methionine labeled P-glycoprotein from multidrug-resistant cells and detect P-glycoprotein on Western blots with high sensitivity. Because these antisera were raised against epitopes in the amino- and carboxy-terminal halves of P-glycoprotein, they should be useful as research tools to define the function of these two halves of the molecule.  相似文献   

20.
P-glycoprotein is a 130-180-kDa integral membrane protein that is overproduced in multidrug-resistant cells. The protein appears to act as an energy-dependent drug efflux pump that has broad specificity for structurally diverse hydrophobic antitumor drugs. Many agents, such as the calcium channel blocker verapamil, reverse multidrug resistance and also interact with P-glycoprotein. The goal of this work was to determine if a common binding site participates in the transport of antitumor drugs and/or the reversal of drug resistance. This was done by comparing the peptide maps of P-glycoprotein (encoded by mdr1b) after it was labeled with a photoactive calcium channel blocker, [3H]azidopine, and a newly identified photoaffinity analog for P-glycoprotein 2-[4-(4-azido-3-[125I]iodobenzoyl) piperazin-1-yl]-4-amino-6,7-dimethoxyquinazoline [( 125I]iodoaryl azidoprazosin). [125I] Iodoaryl azidoprazosin, which classically has been used to identify the alpha 1-adrenergic receptor, bound to P-glycoprotein and was preferentially competed by vinblastine greater than actinomycin D greater than doxorubicin greater than colchicine. Peptide maps derived from P-glycoprotein labeled with [3H]azidopine or [125I]iodoaryl azidoprazosin were identical. After maximal digestion under conditions for Cleveland mapping, a single major 6-kDa fragment was obtained after digestion with V8 protease, whereas two major fragments, 6.5 and 5.5 kDa, were detected after digestion with chymotrypsin. The 6.0-kDa V8 fragment and the 6.5-kDa chymotrypsin fragment were both found when P-glycoprotein encoded by mdr1a and mdr1b was compared. Despite its specific interaction with P-glycoprotein, neither iodoaryl azidoprazosin nor prazosin markedly reversed resistance compared with verapamil or azidopine. Further, multidrug-resistant cells were 900-fold resistant to vinblastine but only 5-fold resistant to prazosin. These data demonstrate that structurally diverse reversal and/or antitumor agents are likely to have differential affinity for a small common domain of P-glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号