首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies specifically reacting with the link proteins, the hyaluronic acid-binding region and chondroitin sulphate-peptides were used to design specific radioimmunoassay procedures. The sensitivity of the method used for the link protein was about 20 ng/ml, and the other two components could be determined at concentrations of about 2 ng/ml. The radioimmunoassay procedures were tested by using proteoglycan subfractions or fragments thereof. The procedures used to quantify link protein and hyaluronic acid-binding region showed no cross-interference. Fragments of trypsin-digested proteoglycan monomers still reacted in the radioimmunoassay for hyaluronic acid-binding region. Subfractions of proteoglycan monomers separated according to size had a gradually higher relative content of the hyaluronic acid-binding region compared with both chondroitin sulphate-peptides and uronic acid, when the molecules were smaller. The proteoglycans therefore may contain a variably large chondroitin sulphate-rich region, which has a constant substitution with polysaccharide side chains.  相似文献   

2.
Antibodies directed against whole bovine nasal-cartilage proteoglycan and against the hyaluronic acid-binding region and chondroitin sulphate peptides from the same molecule were used in immunodiffusion and immunoelectromigration experiments. Proteoglycans from bovine nasal and tracheal cartilage showed immunological identity, with all three antisera. Proteoglycans from pig hip articular cartilage, dog hip articular cartilage, human tarsal articular cartilage and rat chondrosarcoma reacted with all the antisera and showed immunological identity with the corresponding structures isolated from bovine nasal-cartilage proteoglycans. In contrast, proteoglycans from rabbit articular cartilage, rabbit nasal cartilage and cultured chick limb buds did not react with the antibodies directed against the hyaluronic acid-binding region, though reacting with antibodies raised against whole proteoglycan monomer and against chondroitin sulphate peptides. All the proteoglycans gave two precipitation lines with the anti-(chondroitin sulphate peptide) antibodies. Similarly, the proteoglycans reacting with the anti-(hyaluronic acid-binding region) antibodies gave two precipitation lines. The results indicate the presence of at least two populations of aggregating proteoglycan monomers in cartilage. The relative affinity of the antibodies for cartilage proteoglycans and proteoglycan substructures from various species was determined by radioimmunoassay. The affinity of the anti-(hyaluronic acid-binding region) antibodies for the proteoglycans decreased in the order bovine, dog, human and pig cartilage. Rat sternal-cartilage and rabbit articular-cartilage proteoglycans reacted weakly, whereas chick limb-bud and chick sternal-cartilage proteoglycans did not react. In contrast, the affinity of antibodies to chondroitin sulphate peptides for proteoglycans increased in the order bovine cartilage, chick limb bud and chick sternal cartilage, dog cartilage, rat chondrosarcoma, human cartilage, pig cartilage, rat sternal cartilage and rabbit cartilage.  相似文献   

3.
4.
In order to study antigenic site(s) present in the carboxyl-terminal part of the alpha-subunit of human choriogonadotropin (hCG-alpha), we attempted to produce site-specific antibodies directed against a 34-residue synthetic peptide analogous to region 59-92 of hCG-alpha. From a fusion experiment performed with a mouse injected with hCG-alpha-(59-92)-peptide conjugated to tetanus toxoid as immunogen, we selected a monoclonal antipeptide antibody (designated FA36) which has high binding activity for 125I-hCG-alpha but not for 125I-hCG in a radioimmunoassay. This antibody is of the IgG1 subclass and displays an affinity constant for 125I-hCG-alpha of 3.1 x 10(8) M-1. Hapten inhibition experiments performed by either radioimmunoassay or enzyme-linked immunosorbent assay with synthetic peptides spanning different portions of the region (59-92) demonstrated that the binding site of FA36 resides on (minimally) the six COOH-terminal amino acids of hCG-alpha, namely Cys-Tyr-Tyr-His-Lys-Ser, and that FA36 binds preferentially to peptides containing a carboxyl group on the COOH-terminal residue. Monoclonal immunoradiometric assays were established to determine the location of antigenic regions recognized by FA36, by antibody AHT20 (which binds only to hCG-alpha), and by antibody HT13 (which binds to both hCG and hCG-alpha). FA36 has the capacity to bind to hCG-alpha bound to either AHT20 or HT13, demonstrating that both AHT20 and HT13 antibodies are directed against antigenic regions distinct from the epitope of FA36. Monoclonal immunoradiometric assays were also carried out to study the binding of FA36 to hCG, the ovine and equine lutropin alpha-subunit, or hCG-alpha minus the 5 COOH-terminal residues (hCG-alpha core). Whereas significant binding of 125I-FA36 was observed with the ovine lutropin alpha-subunit, no binding was found with the equine lutropin alpha-subunit. As expected, FA36 did not bind to hCG-alpha core. Binding was also not detected with hCG, confirming that FA36 is specific for free hCG-alpha and that the COOH-terminal part of hCG-alpha is either weakly or (more likely) not at all accessible in the alpha/beta-dimer for antibody binding. Finally, immunoblots performed on hCG-alpha-(59-62)-peptide and various denatured alpha-subunits indicated that, with the exception of the equine lutropin alpha-subunit, FA36 detected various denatured alpha-subunits and particularly the alpha-subunit of carp gonadotropin-thyrotropin. This latter observation suggests a high degree of homology between the COOH-terminal regions of the alpha-subunits of fish gonadotropin and analogous mammalian hormones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The immunological properties of a glycoprotein fraction and of proteoglycan subunits obtained from bovine nasal cartilage by nondisruptive methods of isolation have been studied. Using the techniques of hemagglutination and hemagglutination inhibition, we found that the glycoprotein contains most of the species-specific determinants, whereas the proteoglycan subunits contain most of the cross-reacting ones.  相似文献   

6.
Cartilage proteoglycan aggregates are separated from collagen and other non-proteoglycan protein by preparative rate zonal sedimentation under associative conditions. Dissociative rate zonal sedimentation produces sedimented proteoglycan of lower protein content with a corresponding increase in the amount of less sedimentable protein-rich proteoglycan. An extensive number of sequential rate zonal sedimentations discloses that the proceess of disaggregation involves the separation of proteoglycans varying continuously in composition with no apparent discontinuities in distribution to indicate the presence of distinctively different macromolecules. The variations encompass proteoglycans of low protein content containing less than 2% keratan sulfate and proteoglycans with keratan sulfate as the predominant polysaccharide (present in concentrations greater than 2-fold that of the chondroitin sulfate) and more than a 10-fold increase in protein content.  相似文献   

7.
8.
9.
Four bovine articular cartilages have been compared with regard to the chemical composition of the whole cartilages, the amount of proteoglycan selectively extracted with 3 M MGCl2 or with 3 M guanidine-HCl, and the compositions and physical properties of the isolated proteoglycans. The whole cartilages differ but slightly in composition. Occipital condylar cartilage, a thin cartilage from the smallest joint, contains 4% more collagen and proportionately less proteoglycan than proximal humeral, the thickest cartilage from the largest joint. Each cartilage contains a pool of proteoglycan that resists extraction with 3 M MgCl2 but is extracted with 3 M guanidine-HCl. The proteoglycan extracted from each cartilage with 3 M guanidine-HCl contains a high molecular weight proteoglycan-collagen complex demonstrated by analytical ultracentrifugation and by the turbidity of its visible and ultra-violet spectra. The four cartilages appear to differ most remarkably in the fraction of total proteoglycan extracted from each as proteoglycan-collagen complex.  相似文献   

10.
Proteoglycans were extracted from normal human articular cartilage of various ages with 4M-guanidinium chloride and were purified and characterized by using preformed linear CsCl density gradients. With advancing age, there was a decrease in high-density proteoglycans of low protein/uronic acid weight ratio and an increase in the proportion of lower-density proteoglycans, richer in keratan sulphate and protein. Proteoglycans of each age were also shown to disaggregate in 4M-guanidinium chloride and at low pH and to reaggregate in the presence of hyaluronic acid and/or low-density fractions. Osteoarthrotic-cartilage extracts had an increased content of higher-density proteoglycans compared with normal cartilage of the same age, and results also suggested that these were not mechanical or enzymic degradation products, but were possibly proteoglycans of an immature nature.  相似文献   

11.
After chondroitinase digestion of bovine nasal and tracheal cartilage proteoglycans, subsequent treatment with trypsin or trypsin followed by chymotrypsin yielded two major types of polypeptide-glycosaminoglycan fragments which could be separated by Sepharose 6B chromatography. One fragment, located close to the hyaluronic acid-binding region of the protein core, had a high relative keratan sulfate content. This fragment contained about 60% of the total keratan sulfate, but less than 10% of the total chondroitin sulfate present in the original proteoglycan preparation. The weight average molecular weight of the keratan sulfate-enriched fragment was 122,000, as determined by sedimentation equilibrium centrifugation. The chemical and physical data indicate that this fragment contains an average of 10 to 15 keratan sulfate chains, if the average molecular weight of individual chains is assumed to be about 8,000, and about 5 chondroitin sulfate chains attached to a peptide of about 20,000 daltons. The other population of fragments was derived from the other end of the proteoglycan molecule, the chondroitin sulfate-enriched region, and contained mainly chondroitin sulfate chains. About 90% of the total chondroitin sulfate, but only 20 to 30% of the total keratan sulfate was recovered in these fragments. On the average, approximately 5 chondroitin sulfate chains and 1 keratan sulfate chain could be linked to the same peptide. Another 10 to 20% of the total keratan sulfate, originally found in or near the hyaluronic acid-binding region, was not separated from the chondroitin sulfate-enriched fragments. Hydroxylamine could be used to liberate a large molecular size, chondroitin sulfate-enriched fragment (Kav 0.54 on Sepharose 2B) from the proteoglycan aggregates. The remainder of the protein core, containing the keratan sulfate-enriched region, was bound to hyaluronic acid with the link proteins and recovered in the void volume on the Sepharose 2B column.  相似文献   

12.
13.
Histochemical properties of cartilage proteoglycans   总被引:1,自引:0,他引:1  
Proteoglycan interaction with alcian blue at different concentrations of magnesium chloride was studied both in vitro and in histological sections of paraffin-embedded tissues. Our experiments indicate that a) proteoglycans with different contents of chondroitin sulfate and keratan sulfate, prepared under nondegradative conditions, are not distinguishable on the basis of the critical electrolyte concentrations at which staining is abolished; b) the state of aggregation of proteoglycans only very slightly affects the alcian blue affinity of the macromolecules at different concentrations of magnesium chloride; c) the interaction of proteoglycans with other components of the connective tissue matrix is an important factor in determining the strength of binding of alcian blue to the polyanionic macromolecules in histological sections. These factors should be considered in interpreting histochemical data obtained by staining tissue sections with alcian blue at different concentrations of magnesium chloride. Proteoglycans, like glycosaminoglycans, are only weakly periodic acid-Schiff-positive.  相似文献   

14.
Synopsis The proteoglycans of cartilage are complex molecules in which chondroitin sulphate and keratan sulphate chains are covalently linked to a protein core, forming a polydisperse population of proteoglycan monomers. By interaction with hyaluronic acid and link proteins, the monomers form large macromolecular complexes.In vivo the proteoglycans mainly occur in such aggregates. In the electron microscope, the cartilaginous matrix can be seen to be made up of thin collagen fibrils and polygonal granules about 10–50 nm in diameter. Addition of the polyvalent cationic dye Ruthenium Red to glutaraldehyde and osmium tetroxide fixatives yields a dense selective staining of the matrix granules. Following a short digestion of cartilage slices with either of the chondroitin sulphate-degrading enzymes hyaluronidase and chondroitinase or with the proteolytic enzyme papain, the matrix granules were few in number or completely absent and the proteoglycan content, measured as hexosamine, decreased by up to 90%. Similarly, extraction of the cartilage with 4 M guanidine-HCl removed all matrix granules and most of the proteoglycans. From these findings, it can be concluded that the matrix granules represent proteoglycans, most probably in aggregate form, and that Ruthenium Red staining may be used to study the distribution of these macromolecules in thin sections. As a complement to chemical studies on proteoglycan structure, it is also possible to observe and measure individual molecules in the electron microscope after spreading them into a monomolecular layer with cytochromec. This technique has been applied in investigations on proteogly cans isolated from bovine nasal cartilage and other hyaline cartilages. The molecules in the monomer fractions appeared as an extended central core filament to which about 25–30 side-chain filaments were attached at various intervals. The core filament, averaging about 300 nm in length, was interpreted as representing the polysaccharide-binding part of the protein core and the side-chain filaments, averaging about 45 nm in length, as representing the clusters of chondroitin sulphate chains. Statistical treatment of the collected data indicated that no distinct subpopulations existed within the monomer fractions. The electron microscopic results correlated well with chemical data for the corresponding fractions and together with recent observations on various aggregate fractions strongly support present concepts of proteoglycan structure.Paper presented at a symposium The Changing directions of carbohydrate histochemistry at the Fifth International Congress of Cytochemistry and Histochemistry in Bucharest, Romania on September 1976.  相似文献   

15.
Physical properties of cartilage proteoglycans   总被引:1,自引:0,他引:1  
  相似文献   

16.
Certain similarities between lysozyme and testicular hyaluronidase suggested that the putative action of the former in disaggregation of cartilage proteoglycans might be explained by a selective effect of the enzyme on the hyaluronic acid portion of the aggregate. Human lysozyme did not reduce the viscosity of either hyaluronate or of aggregated proteoglycans, it did not reduce the sedimentation velocity of hyaluronate, and it did not alter the chromatographic profile of the aggregate in a system sensitive to the difference between aggregate and its subunit. The role of human cartilage lysozyme in disaggregation of cartilage proteoglycans remains uncertain.  相似文献   

17.
1. Rat tail-tendon collagen was coupled to activated Sepharose 4B at 2.5 mg of collagen/ml of gel. Chromatographic columns of this gel were calibrated with T2 virus (Vo) and Dnp-alanine (Vt). 2. The chromatographic behaviour of cartilage proteoglycans on the collagen-substituted gel was studied under conditions of varying ionic strength. Proteoglycan subunit obtained from bovine nasal cartilage, the proteoglycan obtained after digestion with chondroitnase ABC and purified chondriotin sulphate were all retarded on the collagen gel by an interaction that abolished at I0.17. Purified keratan sulphate and hyaluronic acid were not retarded. 3. A strong ionic interaction between cartilage proteoglycan and collagen was demonstrated to depend on the structure of the protein core of the proteoglycan.  相似文献   

18.
Two types of sialic acid-containing component are released from articular cartilage proteoglycan monomer (D1) treated with 0.05 M NaOH containing 1 M NaBH4. The smaller component, which has not been described before, contains galactosamine, glucosamine, galactose and sialic acid (Molar ratio 1:1:1:2). It is eluted from ECTEOLA-cellulose with low molarity (0.4 M) sodium formate and has Kav of 0.70 on Bio-gel P30. Its presence on the proteoglycan monomer was demonstrated at all stages of foetal and adult life.  相似文献   

19.
The degradation of proteoglycan was examined in cultured slices of pig articular cartilage. Pig leucocyte catabolin (10 ng/ml) was used to stimulate the chondrocytes and induce a 4-fold increase in the rate of proteoglycan loss from the matrix for 4 days. Material in the medium of both control and depleted cultures was mostly a degradation product of the aggregating proteoglycan. It was recovered as a very large molecule slightly smaller than the monomers extracted with 4M-guanidinium chloride and lacked a functional hyaluronate binding region. The size and charge were consistent with a very limited cleavage or conformational change of the core protein near the hyaluronate binding region releasing the C-terminal portion of the molecule intact from the aggregate. The 'clipped' monomer diffuses very rapidly through the matrix into the medium. The amount of proteoglycan extracted with 4M-guanidinium chloride decreased during culture from both the controls and depleted cartilage, and the average size of the molecules initially remained the same. However, the proportion of molecules with a smaller average size increased with time and was predominant in explants that had lost more than 70% of their proteoglycan. All of this material was able to form aggregates when mixed with hyaluronate, and glycosaminoglycans were the same size and charge as normal, indicating either that the core protein had been cleaved in many places or that larger molecules were preferentially released. A large proportion of the easily extracted and non-extractable proteoglycan remained in the partially depleted cartilage and the molecules were the same size and charge as those found in the controls. There was no evidence of detectable glycosidase activity and only very limited sulphatase activity. A similar rate of breakdown and final distribution pattern was found for newly synthesized proteoglycan. Increased amounts of latent neutral metalloproteinases and acid proteinase activities were present in the medium of depleted cartilage. These were not thought to be involved in the breakdown of proteoglycan. Increased release of proteoglycan ceased within 24h of removal of the catabolin, indicating that the effect was reversible and persisted only while the stimulus was present.  相似文献   

20.
No significant inhibition of purified rheumatoid synovial collagenase was found when this enzyme was assayed in the presence of porcine or human cartilage proteoglycans. Reaction mixtures containing up to twice the amount of proteoglycan compared to that of collagen, w/w, had little effect on collagen degradation as judged by the reconstituted [4C]collagen fibril assay and polyacrylamide gel electrophoresis. Proteoglycans were not degraded by the synovial collagenase preparation. Although the human collagenases derived from rheumatoid synoviam, gastric mucosa, skin and granulocytes showed some reduction in activity when exposed to aggregated proteoglycans at high concentrations, disaggregated proteoglycans had no inhibitory effect. It is concluded that cartilage proteoglycans do not directly inhibit human collagenases in vitro, but in vivo they may provide some physical barriers which might limit the accessibility of the enzyme to its collagen substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号