首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aptamers are synthetic nucleic acid‐based high affinity ligands that are able to capture their corresponding target via molecular recognition. Here, aptamer‐based affinity purification for His‐tagged proteins was developed. Two different aptamers directed against the His‐tag were immobilized on magnetic beads covalently. The resulting aptamer‐modified magnetic beads were characterized and successfully applied for purification of different His‐tagged proteins from complex E. coli cell lysates. Purification effects comparable to conventional immobilized metal affinity chromatography were achieved in one single purification step. Moreover, we have investigated the possibility to regenerate and reuse the aptamer‐modified magnetic beads and have shown their long‐term stability over a period of 6 months. Biotechnol. Bioeng. 2011;108: 2371–2379. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
The application of resins normally used in solid-phase organic synthesis to the affinity capture of a mammalian DNA polymerase beta (pol beta) is reported. Lithocholic acid (LCA), an inhibitor of pol beta, was immobilized on various solid supports, and the batch affinity purification of pol beta from a mixture of proteins using these LCA-immobilized resins was examined. Of the resins tested, TentaGel was the most effective at purifying pol beta and at resisting nonspecific absorption of proteins. The immobilized LCA recognized pol beta specifically, which resulted in pol beta binding to the resin. Using the LCA-immobilized resin, it was possible to purify pol beta from a mixture of proteins. Furthermore, it was possible to concentrate pol beta from a crude nuclear extract of human T lymphoma Molt4 cells. To facilitate the immobilization of compounds on TentaGel resins, we also designed and prepared photoaffinity beads containing a photoreactive group at the free termini of the TentaGel resin. The pol beta inhibitors LCA, C18-beta-SQDG, and epolactaene were immobilized on the photoaffinity beads by photoreaction. The batch affinity purification of pol beta from a protein mixture could be also achieved with these beads.  相似文献   

3.
A high-performance affinity purification technique has been developed for cisplatin (CDDP)-damaged DNA binding proteins directly from crude nuclear extracts of HeLaS3 cell using novel submicron beads synthesized by copolymerization of styrene and glycidyl methacrylate (GMA). The beads dramatically decreased both nonspecific protein adsorption on solid surfaces and elution volume and simplified the handling procedure. Preparation of the beads for purification was carried out by immobilization of telomeric repeats, (TTAGGG)(n), on the surface after the reaction with CDDP. At least nine proteins clearly showed higher affinity to CDDP-DNA and were identified by amino acid sequence analysis including HMGB (high mobility group), hUBF (human upstream binding factor), and Ku autoantigen, which were previously reported to be components of CDDP-damaged DNA binding proteins.  相似文献   

4.
An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.  相似文献   

5.
Affinity tags have become highly popular tools for purifying recombinant proteins from crude extracts by affinity chromatography. Besides, short peptides are excellent ligands for affinity chromatography, as they are not likely to cause an immune response in case of leakage into the product, they are more stable than antibodies to elution and cleaning conditions and they usually have very acceptable selectivity. Hydropathically complementary peptides designed de novo show enough selectivity to be used successfully as peptide ligands for protein purification from crude extracts. Recognition specificity and selectivity in the interaction between the complementary peptide pair His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu and Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe have been demonstrated by other authors. In this work, we designed a recombinant protein purification method using a peptide affinity tag that binds to a peptide-binding partner immobilized on a chromatographic matrix. The enhanced green fluorescent protein expressed (EGFP) in Escherichia coli was used as the model. The peptide Gly-Gly-Gly-His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu was synthesized by solid phase using the Fmoc chemistry and immobilized in NHS-Sepharose (PC-Sepharose). Gly residues were added as a spacer arm at the N terminus. The EGFP was expressed either with the fusion tag Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe on the C terminus (EGFP-CPTag) or without any fusion tag. After cell disruption, the extract was directly applied to the PC-Sepharose column equilibrated with 20mM sodium phosphate buffer, pH 7.0. The adsorbed EGFP-CPTag was then eluted with 1M Tris. The yield was 98% and the purification factor 4.6. By contrast, EGFP without tag pass through without interacting with the PC-Sepharose column. The method designed can be applied for the purification of other recombinant proteins.  相似文献   

6.
We describe a fast and simple one-step affinity-purification method for the isolation of specific RNA-binding proteins. An in vitro-transcribed hybrid RNA consisting of an aptamer sequence with high binding specificity to the antibiotic streptomycin and a putative protein-binding RNA sequence is incubated with crude extract. After complex formation, the sample is applied to an affinity column containing streptomycin immobilized to Sepharose. The binding of the in vitro-assembled RNA-protein complex to streptomycin-Sepharose is mediated by the aptamer RNA and the specifically bound proteins are recovered from the affinity matrix by elution with the antibiotic. Employing two well-characterized RNA-protein interactions, we tested the performance of this new method. The spliceosomal U1A protein and the bacteriophage MS2 coat protein could be isolated via their appropriate RNA motif containing hybrid RNA from crude yeast extracts in high yield and purity after only one round of affinity purification. As the purification principle is independent of the extract source, this new affinity chromatography strategy that makes use of an in vitro-selected antibiotic-binding RNA as a tag, "StreptoTag," should be applicable to extracts from other organisms as well. Therefore, we propose StreptoTag to be a versatile tool for the isolation of unknown RNA-binding proteins.  相似文献   

7.
A novel and sensitive fluorescence biosensor based on aptamer and rolling circle amplification for the determination of cocaine was developed in the present work. Here cocaine aptamers immobilized onto Au nanoparticles modified magnetic beads hybridized with short DNA strand. In the presence of cocaine, the short DNA strand was displaced from aptamer owing to cocaine specially binding with aptamer. Next, the short DNA strand was separated by magnetic beads and used to originate rolling circle amplification as primer. The end products of rolling circle amplification were detected by fluorescence signal generation upon molecular beacons hybridizing with the end products of rolling circle amplification. With rolling circle amplification and the separation by magnetic beads reducing the background signal, the new strategy was suitable for the detection of as low as 0.48 nM cocaine. Compared with reported cocaine sensors, our method exhibited excellent sensitivity. Our new strategy may provide a platform for numerous proteins and low molecular weight analytes to highly sensitively detect by DNA amplification.  相似文献   

8.
《Process Biochemistry》2014,49(3):520-528
The magnetic beads were synthesized using glycidylmethacrylate (GMA) and methylmethacrylate (MMA) monomers. A multimodal ligand (i.e., p-amino-benzamidine) was covalently immobilized onto magnetic beads after glutaraldehyde activation, and consequently used for purification of the trypsin from bovine pancreas. The p-amino-benzamidine ligand immobilized magnetic beads were characterized by FTIR, VSM, SEM, and analytical methods. Trypsin adsorption experiments were investigated under different experimental conditions (i.e., medium pH, initial trypsin concentration, temperature, and ionic strength) in a batch system. Maximum trypsin adsorption capacity was found to be 75.9 ± 2.6 mg/g beads. Adsorbed trypsin was eluted by using (0.1 M acetate buffer, pH 3.0) with a 97% recovery. The purification factor of trypsin from crude pancreas extract was 8.7 folds. The purity of the eluted trypsin from p-amino-benzamidine functionalized magnetic beads was determined as 86% by HPLC. The method developed in this report was successfully applied for purification of the trypsin from crude pancreas extract in a magnetically stabilized fluidized bed reactor.  相似文献   

9.
A fiber-optic microarray biosensor using aptamers as receptors   总被引:7,自引:0,他引:7  
A fiber-optic biosensor using an aptamer receptor has been developed for the measurement of thrombin. An antithrombin DNA aptamer was immobilized on the surface of silica microspheres, and these aptamer beads were distributed in microwells on the distal tip of an imaging fiber. A different oligonucleotide bead type prepared using the same method as the aptamer beads was also included in the microwells to measure the degree of nonspecific binding. The imaging fiber was coupled to a modified epifluorescence microscope system, and the distal end of the fiber was incubated with a fluorescein-labeled thrombin (F-thrombin) solution. Nonlabeled thrombin could be detected using a competitive binding assay with F-thrombin. The aptamer beads selectively bound to the target and could be reused without any sensitivity change. The fiber-optic microarray system has a detection limit of 1 nM for nonlabeled thrombin, and each test can be performed in ca. 15 min including the regeneration time.  相似文献   

10.
11.
Since the development of affinity chromatography, affinity purification technology has been applied to many aspects of biological research, becoming an indispensable tool. Efficient strategies for the identification of biologically active compounds based on biochemical specificity have not yet been established, despite widespread interest in identifying chemicals that directly alter biomolecular functions. Here, we report a novel method for purifying chemicals that specifically interact with a target biomolecule using reverse affinity beads, a receptor-immobilized high-performance solid-phase matrix. When FK506-binding protein 12 (FKBP12) immobilized beads were used in this process, FK506 was efficiently purified in one step either from a mixture of chemical compounds or from fermented broth extract. The reverse affinity beads facilitated identification of drug/receptor complex binding proteins by reconstitution of immobilized ligand/receptor complexes on the beads. When FKBP12/FK506 and FKBP12/rapamycin complexes were immobilized, calcineurin and FKBP/rapamycin-associated protein were purified from a crude cell extract, respectively. These data indicate that reverse affinity beads are powerful tools for identification of both specific ligands and proteins that interact with receptor/ligand complexes.  相似文献   

12.
We have developed a novel nickel-silica matrix for the generation of magnetic beads for metal-ion affinity chromatography. In contrast to magnetic Ni-NTA agarose beads, the novel particle type (SiMAC) consists of a magnetic core and a nickel-silica composite matrix with the nickel ions tightly integrated in the silica. This results in a much higher number of chelating groups compared with Ni-NTA agarose beads. With the SiMAC beads, greatly improved purification of histidine-tagged proteins from crude bacterial extracts was achieved. The yield was at least twice as high as with conventional materials, the method is faster, since the coupling step is omitted and there is no need for handling toxic Ni(2+) salts.  相似文献   

13.
Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Here we demonstrate that an RNA aptamer selected against eukaryotic initiation factor 4A (eIF4A) serves as an efficient biosensor. The aptamer, when immobilized to resin, purifies eIF4A from crude cell extracts by affinity pull-down, and 32P-labeled aptamer can detect some 300 ng of eIF4A by dot-blot analysis. Moreover, by use of an aptamer-immobilized sensor chip, we developed a surface plasmon resonance assay to detect eIF4A at the nanogram level within whole cell lysates after optimizing sample preparation, thereby showing a real-time sensor for eIF4A in cell extract solution.  相似文献   

14.
We describe the characterization of a DNA aptamer that displays high affinity and specificity for the anthracyclines daunomycin and doxorubicin, both of which are frequently used in chemotherapy. Aptamers were isolated from a pool of random sequences using a semiautomated procedure for magnetic beads. All selected aptamers displayed high affinity for the target molecule daunomycin. One aptamer was further characterized and exhibited a dissociation constant (KD) of 20 nM. To examine the aptamer's binding properties and clarify its applicability for diagnostic assays, its performance under various buffer conditions was evaluated. The aptamer proved to be very robust and not dependent on the presence of specific ions. It also tolerated a wide pH range and immobilization via 5'-biotinylation. Furthermore, a competition assay for sensitive daunomycin detection was established. This not only allows the determination of the aptamer's specificity but also allows the quantification of as little as 8.4 microg/L daunomycin and doxorubicin.  相似文献   

15.
Covalently immobilized biotin was used as a biospecific adsorbant to investigate the application of streptavidin as an affinity domain for simultaneous purification and immobilization of recombinant proteins. A streptavidin-beta-galactosidase fusion protein was constructed and tested as a model system. The gene for streptavidin from Streptomyces avidinii was modified by polymerase chain reaction to mutate the stop codon and to facilitate cloning into an Escherichia coli expression vector yielding a versatile plasmid with 37 unique restriction enzyme sites at the 3' end. E. coli beta-galactosidase was cloned in-frame to the streptavidin gene. Analysis of lysates of induced recombinant E. coli cells by SDS-PAGE and Western blots indicated that the 133.6-kDa fusion protein was expressed. Sulfosuccinimidyl-6-(biotinamido) hexanoate was covalently immobilized on 3-aminopropyl-controled-pore glass beads. Exposure of recombinant cell lysates to this support indicated that streptavidin-beta-galactosidase was bioselectively adsorbed. The resulting biocatalyst contained 300 mg protein per gram of beads and exhibited a specific activity of 306 betamol/min per milligram protein with o-nitrophenyl-beta-D-galactopyranoside as substrate corresponding to approximately 50% of that observed for commercially pure E. coli beta-galactosidase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
A library of heptapeptides displayed on the surface of filamentous phage M13 was evaluated as a potential source of affinity ligands for the purification of Rhizomucor miehei lipase. Two independent selection (biopanning) protocols were employed: the enzyme was either physically adsorbed on polystyrene or chemically immobilized on small magnetic beads. From screening with the polystyrene-adsorbed lipase it was found that there was a rapid enrichment of the library with “doublet” clones i.e. the phage species which carried two consecutive sequences of heptapeptides, whilst no such clones were observed from the screening using lipase attached to magnetic beads. The binding of the best clones to the enzyme was unambiguously confirmed by ELISA. However the synthetic heptapeptide of identical sequence to the best “monomeric” clone did not act as a satisfactory affinity ligand after immobilization on Sepharose. This indicated that the interaction with lipase was due to both the heptapeptide and the presence of a part of the phage coat protein. This conclusion was further verified by immobilizing the whole phage on the surface of magnetic beads and using the resulting conjugate as an affinity adsorbent. The scope of application of this methodology and the possibility of preparing phage-based affinity materials are briefly discussed.  相似文献   

17.
18.
The estrogenic compound 17β-estradiol (E2) is widely studied for its potential endocrine disruption effects. Due to the low level of E2 present in the environment, it is highly desirable to develop a sensitive and efficient separation and enrichment method for E2 analysis. In this paper, we proposed a novel E2 preconcentration method using anti-E2 aptamer-anchored isothiocyanate-modified beads (NCS beads). The glass beads are chemically modified with primary amino group, and then treated with phenylene diisothiocyanate (PDITC) to generate an isothiocyanate group, which is reactive towards the amine group. The amino-modified anti-E2 aptamer can be easily covalently immobilized onto the as-prepared NCS beads. The experimental results demonstrated that the aptamer affinity microbeads could selectively retain and separate E2 compound. The effects of the operation parameters on retention of E2, including washing condition, eluting condition, the number of beads, and the incubation time were investigated. Moreover, high-performance liquid chromatography with preconcentration of E2 on the aptamer affinity microbeads was applied to detect the E2 in the spiked water samples and obtained a good recovery.  相似文献   

19.
On the basis of aptamer-based rolling circle amplification (RCA) and magnetic beads (MBs), a highly sensitive electrochemical method was developed for the determination of Ochratoxin A (OTA). Initially, an amino-modified capture DNA was immobilized onto MBs for the following hybridization with an OTA aptamer and a phosphate labeled padlock DNA. In the presence of OTA, the aptamer would dissociate from the bioconjugate, and the padlock DNA would subsequently hybridize with the capture DNA to form a circular template with the aid of the T4 ligase. Next, capture DNA would act as primer to initiate a linear RCA reaction and hence generate a long tandem repeated sequences by phi29 DNA polymerase and dNTPs. Then, two quantum dots (QDs) labeled DNA probes were tagged on the resulted RCA product to indicate the OTA recognition event by electrochemical readout. This strategy, based on the novel design of OTA-mediated DNA circularization, the combination of RCA and double signal probes introduction, could detect OTA down to the level of 0.2 pg mL(-1) with a dynamic range spanning more than 4 orders of magnitude. The proposed approach is tested to determine OTA in red wines and shows good application potential in real samples.  相似文献   

20.
A biosensor-based micro-affinity purification method to recover protein binding partners and their complexes for down stream proteomics analysis has been developed using the BIAcore 3000 fitted with a prototype Surface Prep Unit (SPU). The recombinant GST-intracellular domain of E-cadherin or the recombinant GST-beta-catenin binding domain of Adenomatous Polyposis Coli (APC) were immobilized onto the SPU and used to affinity purify binding partners from chromatographically enriched SW480 colon cancer cell lysates. A GST- immobilized surface was used as a control. Samples recovered from the SPU were subjected to SDS-PAGE with sensitive Coomassie staining followed by automated in-gel digestion and LC-MS/MS. The results obtained using the SPU were compared with similar experiments performed using Sepharose beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号