首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co- N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide)[P(NIPAAm-co-DMAAm)-b-PLGA] are fabricated and used as a carrier for the controlled delivery of paclitaxel. Paclitaxel is efficiently loaded into the micelles by a membrane dialysis method. The lower critical solution temperature (LCST) of the micelles is 39.0 degrees C in PBS. Encapsulation efficiency and loading level of paclitaxel are affected by the initial loading level of paclitaxel, fabrication temperature and polymer composition. The blank and paclitaxel-loaded micelles are characterized by particle size analysis (DLS), morphology (TEM and AFM) and paclitaxel distribution (NMR, DSC and WAXRD). The micelles are spherical in shape, having an average size less than 130 nm. Paclitaxel is molecularly distributed within the core of micelles. Sustained release of paclitaxel is achieved, which is much faster at a temperature above the LCST than at the normal body temperature (37 degrees C). Cytotoxicity of free paclitaxel and paclitaxel-loaded micelles against a human breast carcinoma cell line (MDA-MB-435S) is studied at different temperatures. The cytotoxicity of the paclitaxol-loaded micelles is greater as compared to free paclitaxel. Enhanced cytotoxicity is achieved by the paclitaxol-loaded micelles when the environmental temperature increases slightly above the LCST. Paclitaxel-loaded P(NIPAAm-co-DMAAm)-b-PLGA micelles may provide a good formulation for cancer therapy.  相似文献   

2.
Lee H  Zeng F  Dunne M  Allen C 《Biomacromolecules》2005,6(6):3119-3128
Six amphiphilic diblock copolymers based on methoxy poly(ethylene glycol) (MePEG) and poly(delta-valerolactone) (PVL) with varying hydrophilic and hydrophobic block lengths were synthesized via a metal-free cationic polymerization method. MePEG-b-PVL copolymers were synthesized using MePEG with Mn = 2000 or Mn = 5000 as the macroinitiator. 1H NMR and GPC analyses confirmed the synthesis of diblock copolymers with relatively narrow molecular weight distributions (Mn/Mw = 1.05-1.14). DSC analysis revealed that the melting temperatures (Tm) of the copolymers (47-58 degrees C) approach the Tm of MePEG as the PVL content is decreased. MePEG-b-PVL copolymer aggregates loaded with the hydrophobic anti-cancer drug paclitaxel were found to have effective mean diameters ranging from 31 to 970 nm depending on the composition of the copolymers. A MePEG-b-PVL copolymer of a specific composition was found to form drug-loaded micelles of 31 nm in diameter with a narrow size distribution and improve the apparent aqueous solubility of paclitaxel by more than 9000-fold. The biological activity of paclitaxel formulated in the MePEG-b-PVL micelles was confirmed in human MCF-7 breast and A2780 ovarian cancer cells. Furthermore, the biocompatibility of the copolymers was established in CHO-K1 fibroblast cells using a cell viability assay. The in vitro hydrolytic and enzymatic degradation of the micelles was also evaluated over a period of one month. The present study indicates that the MePEG-b-PVL copolymers are suitable biomaterials for hydrophobic drug formulation and delivery.  相似文献   

3.
目的:探讨靶向MDM2反义寡核苷酸(ASON)联合紫杉醇对乳腺癌MCF-7细胞株的影响。方法:合成一段与MDM2 mRNA特异性结合的反义寡核苷酸和与反义寡核苷酸有4个碱基不同的的错义寡核苷酸(MON),脂质体2000介导不同浓度的MDM2ASON转染MCF-7乳腺癌细胞系,转染的乳腺癌细胞通过1μmol/L紫杉醇药物处理后,采用RT-PCR和Western Blot方法检测MDM2 ASON联合紫杉醇的协同作用及对乳腺癌MCF-7细胞株的抑制效率,MTT观察给药后MCF-7细胞的增殖能力和药物敏感性。结果:MDM2反义寡核苷酸联合紫杉醇明显下调MDM2 mRNA及MDM2蛋白表达水平,抑制MCF-7细胞的生长,随着MDM2 ASON浓度的增加,MDM2表达越来越低,协同作用越来越强,呈剂量依赖关系,A500联合紫杉醇的协同作用最明显,MTT显示紫杉醇处理的转染MCF-7细胞增殖抑制率明显增高,A500抑制增殖作用最明显,抑制率达(13.0±0.84)%。结论:不同浓度MDM2 ASON转染后的乳腺癌MCF-7细胞,等浓度紫杉醇处理后,乳腺癌MCF-7细胞MDM2表达明显降低,细胞凋亡增加,,MDM2 ASON联合紫杉醇对MCF-7细胞有协同作用,提高了乳腺癌MCF-7细胞对紫杉醇的药物敏感性。  相似文献   

4.
The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(D,L-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems.  相似文献   

5.
Understanding of the functions of microRNAs in breast cancer and breast cancer stem cells have been a hope for the development of new molecular targeted therapies. Here, it is aimed to investigate the differences in the expression levels of let-7a, miR-10b, miR-21, miR-125b, miR-145, miR-155, miR-200c, miR-221, miR-222 and miR-335, which associated with gene and proteins in MCF-7 (parental) and MCF-7s (Mammosphere/stem cell-enriched population/CD44+/CD24-cells) cells treated with paclitaxel. MCF-7s were obtained from parental MCF-7 cells. Cytotoxic activity of paclitaxel was determined by ATP assay. Total RNA isolation and cDNA conversion were performed from the samples. Changes in expression levels of miRNAs were examined by RT-qPCR. Identified target genes and proteins of miRNAs were analyzed with RT-qPCR and western blot analysis, respectively. miR-125b was significantly expressed (2.0946-fold; p = 0.021) in MCF-7s cells compared to control after treatment with paclitaxel. Downregulation of SMO, STAT3, NANOG, OCT4, SOX2, ERBB2 and ERBB3 and upregulation of TP53 genes were significant after 48 h treatment in MCF-7s cells. Protein expressions of SOX2, OCT4, SMAD4, SOX2 and OCT4 also decreased. Paclitaxel induces miR-125b expression in MCF-7s cells. Upregulation of miR-125b may be used as a biomarker for the prediction of response to paclitaxel treatment in breast cancer.  相似文献   

6.
Paclitaxel is an effective chemotherapeutic agent that is widely used for the treatment of several cancers, including breast, ovarian, and non-small-cell lung cancer. Due to its high lipophilicity, paclitaxel is difficult to administer and requires solubilization with Cremophor EL (polyethoxylated castor oil) and ethanol, which often lead to adverse side effects, including life-threatening anaphylaxis. Incorporation of paclitaxel in dimyristoylphosphatidylcholine:dimyristoylphosphatidylglycerol (DPPC:DMPG) liposomes can facilitate its delivery to cancer cells and eliminate the adverse reactions associated with the Cremophor EL vehicle. Accordingly, the effectiveness of liposomal paclitaxel on MCF-7 breast cancer cells was examined. The results from this study showed that (i) the lipid components of the liposomal formulation were nontoxic, (ii) the cytotoxic effects of liposomal paclitaxel were improved when compared with those seen with conventional paclitaxel, and (iii) the intracellular paclitaxel levels were higher in MCF-7 cells treated with the liposomal paclitaxel formulation. The results of these studies showed that delivery of paclitaxel as a liposomal formulation could be a promising strategy for enhancing its chemotherapeutic effects.  相似文献   

7.
The chemotherapeutic drug paclitaxel induces microtubular stabilization and mitotic arrest associated with increased survivin expression. Survivin is a member of the inhibitor of apoptosis (iap) family which is highly expressed in during G2/M phase where it regulates spindle formation during mitosis. It is also constitutively overexpressed in most cancer cells where it may play a role in chemotherapeutic resistance. MCF-7 breast cancer cells stably overexpressing the sense strand of survivin (MCF-7(survivin-S) cells) were more resistant to paclitaxel than cells depleted of survivin (MCF-7(survivin-AS) despite G2/M arrest in both cell lines. However, survivin overexpression did not protect cells relative to control MCF-7(pcDNA3) cells. Paclitaxel-induced cytotoxicity can be enhanced by retinoic acid and here we show that RA strongly reduces survivin expression in MCF-7 cells and prevents paclitaxel-mediated induction of survivin expression. Mitochondrial release of cytochrome c after paclitaxel alone or in combination with RA was weak, however robust Smac release was observed. While RA/paclitaxel-treated MCF-7 (pcDNA3) cultures contained condensed apoptotic nuclei, MCF-7(survivin-S) nuclei were morphologically distinct with hypercondensed disorganized chromatin and released mitochondrial AIF-1. RA also reduced paclitaxel-associated levels of cyclin B1 expression consistent with mitotic exit. MCF-7(survivin-S) cells displayed a 30% increase in >2N/<4N ploidy while there was no change in this compartment in vector control cells following RA/paclitaxel. We propose that RA sensitizes MCF-7 cells to paclitaxel at least in part through survivin downregulation and the promotion of aberrant mitotic progression resulting in apoptosis. In addition we provide biochemical and morphological data which suggest that RA-treated MCF-7(survivin-S) cells can also undergo catastrophic mitosis when exposed to paclitaxel.  相似文献   

8.
Encapsulation of paclitaxel in macromolecular nanoshells   总被引:1,自引:0,他引:1  
Zahr AS  Pishko MV 《Biomacromolecules》2007,8(6):2004-2010
An electrostatic layer-by-layer self-assembly technique was used to encapsulate solid core paclitaxel nanoparticles within a polymeric nanometer-scale shell. This approach provides a new strategy for the development of polymeric vehicles that control drug release and target diseased tissues and cells specific to the ailment, such as breast cancer. Core paclitaxel nanoparticles, 153 +/- 28 nm in diameter, were prepared using a modified nanoprecipitation technique. A nanoshell composed of multilayered polyelectrolytes, poly(allylamine hydrochloride) and poly(styrene-4-sulfonate) was assembled stepwise onto core charged drug nanoparticles. In vitro studies were performed to determine the anticancer activity of paclitaxel core-shell nanoparticles. Paclitaxel core-shell nanoparticles induced cell cycle arrest in the G2/M phase after 24 and 48 h of incubation with a human breast carcinoma cell line, MCF-7. Changes in MCF-7 cell morphology, fragmentation of the nucleus, and loss of cell-cell contacts indicated that the cells responded to paclitaxel core nanoparticles upon treatment for 24 and 48 h. Cells arrested in G2/M phase illustrated abnormal microtubule and actin cytoskeleton morphology. The core-shell drug nanoparticles fabricated using this procedure provide a new approach in the delivery of paclitaxel devoid of Cremophor EL, a solvent that causes adverse side effects in patients undergoing chemotherapy for treatment of metastasized mammary cancers.  相似文献   

9.
Li YY  Zhang XZ  Cheng H  Kim GC  Cheng SX  Zhuo RX 《Biomacromolecules》2006,7(11):2956-2960
A new amphiphilic Y-shaped copolymer, comprised of hydrophobic poly(undecylenic acid) (PUA) and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm), was designed and synthesized. A cytotoxicity study revealed that P(UA-Y-NIPAAm) copolymers did not exhibit apparent inhibition impact on the proliferation of cells when the concentration of the copolymer was below 1000 mg/L. Characterization demonstrated that the P(UA-Y-NIPAAm) copolymer is thermosensitive with a lower critical solution temperature (LCST) of 31 degrees C. In water, the P(UA-Y-NIPAAm) copolymer would self-assemble into micelles with a critical micelle concentration (CMC) of 20 mg/L. Self-assembled P(UA-Y-NIPAAm) micelles exhibited a nanospherical morphology of 40 to approximately 80 nm in size. The controlled drug release behavior of the P(UA-Y-NIPAAm) micelles was further investigated, and self-assembled micelles exhibited improved properties in controlled drug release.  相似文献   

10.
The copolymer of styrene-maleic acid (SMA) was used to construct micelles containing pirarubicin (4'-O-tetrahydropyranyladriamycin, or THP) as a new anticancer drug formulation. The procedure for the preparation of the micelles was simple, the component consisting of only SMA and pirarubicin in a noncovalent association, possibly by hydrophobic interaction between the styrene portion of SMA and pirarubicin chromophore. This method ensures more than 80% recovery of pirarubicin by weight, and 60% of drug loading (by weight) was achieved. The micelles obtained (SMA-THP) showed high solubility in water and a constant pirarubicin release rate of about 3-4%/day in vitro. SMA-THP micelles had an average molecular size of about 34 kDa according to gel chromatography; this size is a marked increase from the 627.6 Da of free THP, which suggests the formation of a micellar structure. When albumin was added, the molecular size of the micelles increased to about 94 kDa, which indicates binding to albumin, a unique characteristic of SMA. SMA-THP micelle preparation had a cytotoxic effect (93-101%) on MCF-7 breast cancer cells and SW480 human colon cancer cells in vitro that was comparable to that of free THP. An in vivo assay of SMA-THP at doses of 20 mg/kg in ddY mice bearing S-180 tumor revealed complete tumor eradication in 100% of tested animals. Mice survived for more than 1 year after treatment with micellar drug doses as high as 100 mg/kg pirarubicin equivalent. This marked antitumor activity can be attributed to the enhanced permeability and retention (EPR) effect of macromolecular drugs seen in solid tumors, which enables selective delivery of drugs to tumor and thus much fewer side effects. Complete blood counts, liver function test, and cardiac histology showed no sign of adverse effects for intravenous doses of the micellar preparation. These data thus suggest that intravenous administration of the SMA-THP micellar formulation can enhance the therapeutic effect of pirarubicin more than 50-fold.  相似文献   

11.
The aim of this study was to design a thermosensitive polymeric micelle system with a relatively fast degradation time of around 1 day. These micelles are of interest for the (targeted) delivery of biologically active molecules. Therefore, N-(2-hydroxyethyl)methacrylamide-oligolactates (HEMAm-Lac(n)()) were synthesized and used as building blocks for biodegradable (block co) polymers. p(HEMAm-Lac(2)) is a thermosensitive polymer with a cloud point (CP) of 22 degrees C which could be lowered by copolymerization with HEMAm-Lac(4). The block copolymer PEG-b-((80%HEMAm-Lac(2))-(20%HEMAm-Lac(4))) self-assembled into compact spherical micelles with an average size of 80 nm above the CP of the thermosensitive block (6 degrees C). Under physiological conditions (pH 7.4; 37 degrees C), the micelles started to swell after 4 h and were fully destabilized within 8 h due to hydrolysis of the lactate side chains. Rapidly degrading thermosensitive polymeric micelles based on PEG-b-((80%HEMAm-Lac(2))-(20%HEMAm-Lac(4))) have attractive features as a (targeted) drug carrier system for therapeutic applications.  相似文献   

12.
Lee SJ  Min KH  Lee HJ  Koo AN  Rim HP  Jeon BJ  Jeong SY  Heo JS  Lee SC 《Biomacromolecules》2011,12(4):1224-1233
A biocompatible, robust polymer micelle bearing pH-hydrolyzable shell cross-links was developed for efficient intracellular delivery of doxorubicin (DOX). The rationally designed triblock copolymer of poly(ethylene glycol)-poly(L-aspartic acid)-poly(L-phenylalanine) (PEG-PAsp-PPhe) self-assembled to form polymer micelles with three distinct domains of the PEG outer corona, the PAsp middle shell, and the PPhe inner core. Shell cross-linking was performed by the reaction of ketal-containing cross-linkers with Asp moieties in the middle shells. The shell cross-linking did not change the micelle size and the spherical morphology. Fluorescence quenching experiments confirmed the formation of shell cross-linked diffusion barrier, as judged by the reduced Stern-Volmer quenching constant (K(SV)). Dynamic light scattering and fluorescence spectroscopy experiments showed that shell cross-linking improved the micellar physical stability even in the presence of micelle disrupting surfactants, sodium dodecyl sulfate (SDS). The hydrolysis kinetics study showed that the hydrolysis half-life (t(1/2)) of ketal cross-links was estimated to be 52 h at pH 7.4, whereas 0.7 h at pH 5.0, indicating the 74-fold faster hydrolysis at endosomal pH. Ketal cross-linked micelles showed the rapid DOX release at endosomal pH, compared to physiological pH. Confocal laser scanning microscopy (CLSM) showed that ketal cross-linked micelles were taken up by the MCF-7 breast cancer cells via endocytosis and transferred into endosomes to hydrolyze the cross-links by lowered pH and finally facilitate the DOX release to inhibit proliferation of cancer cells. This ketal cross-linked polymer micelle is promising for enhanced intracellular delivery efficiency of many hydrophobic anticancer drugs.  相似文献   

13.
The study was to develop paclitaxel-loaded formulations using a novel type of self-assembled nanoparticles that was composed of block copolymers synthesized from poly(gamma-glutamic acid) and poly(lactide) via a simple coupling reaction. The nanoparticles (the NPs) were prepared with various feed weight ratios of paclitaxel to block copolymer (the P/BC ratio). The morphology of all prepared nanoparticles was spherical and the surfaces were smooth. Increasing the P/BC ratio significantly increased the drug loading content of the prepared nanoparticles, but remarkably reduced the drug loading efficiency. The release rate of paclitaxel from the NPs decreased significantly as the P/BC ratio increased. For the potential of targeting liver cancer cells, galactosamine was further conjugated on the prepared nanoparticles (the Gal-NPs) as a targeting moiety. It was found that the activity in inhibiting the growth of HepG2 cells (a liver cancer cell line) by the Gal-NPs was comparable to that of a clinically available paclitaxel formulation, while the NPs displayed a significantly less activity. This may be attributed to the fact that the Gal-NPs had a specific interaction with HepG2 cells via ligand-receptor recognition. Cells treated with distinct paclitaxel formulations resulted in arrest in the G2/M phase. The arrest of cells in the G2/M phase was highly suggestive of interference by paclitaxel with spindle formation and was consistent with the morphological findings presented herein. In conclusion, the active targeting nature of the Gal-NPs prepared in the study may be used as a potential drug delivery system for the targeted delivery to liver cancers.  相似文献   

14.
Epidermal growth factor (EGF)-conjugated copolymer micelles were prepared from a mixture of diblock copolymers of methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) (MePEG-b-PVL) and EGF-PEG-b-PVL for targeted delivery to EGF receptor (EGFR)-overexpressing cancers. The block copolymers and functionalized block copolymers were synthesized using PEG as the macroinitiator and HCl-diethyl ether as the catalyst. The MePEG-b-PVL and the carboxyl-terminated PEG-b-PVL (HOOC-PEG-b-PVL) copolymers were found to have molecular weights of 5940 and 5900, respectively, as determined by gel permeation chromatography (GPC) analyses. The HOOC-PEG-b-PVL copolymers were then activated by N-hydroxysuccinimide and subsequently reacted with EGF to form the EGF-PEG-b-PVL copolymers. The efficiency for the conjugation of EGF to the copolymer was found to be 60.9%. A hydrophobic fluorescent probe, CM-DiI, was loaded into both the nontargeted MePEG-b-PVL micelles and the targeted EGF-conjugated PEG-b-PVL micelles. The effective mean diameters of the CMDiI-loaded nontargeted and the CMDiI-loaded targeted micelles were found to be 32 +/- 1 nm and 45 +/- 2 nm, respectively, as determined by dynamic light scattering (DLS). The zeta potentials for the nontargeted micelles (no CM-DiI-loaded), CM-DiI-loaded nontargeted micelles, and CM-DiI-loaded targeted micelles were found to be -6.5, -8.7, and - 13.5 mV, respectively. Evaluation of the in vitro release of CM-DiI from the MePEG-b-PVL micelles in phosphate buffer saline (0.01 M, pH = 7.4) containing 10% (v/v) fetal bovine serum at 37 degrees C revealed that approximately 20% of the probe was released within the first 2 h. Confocal laser scanning microscopy (CLSM) analysis revealed that the targeted micelles containing CM-DiI accumulated intracellularly in EGFR-overexpressing MDA-MB-468 breast cancer cells following a 2 h incubation period, while no detectable cell uptake was observed for the nontargeted micelles. Results obtained from the confocal images were confirmed in an independent study by measuring the intracellular CM-DiI fluorescence in cell lysate. In addition, the presence of free EGF was found to decrease the extent of uptake of the targeted micelles. Nuclear staining of the cells with Hoechst 33258 indicated that the targeted micelles mainly localized in the perinuclear region and some of the micelles were localized in the nucleus. These results demonstrate that the EGF-conjugated copolymer micelles developed in this study have potential as vehicles for targeting hydrophobic drugs to EGFR-overexpressing cancers.  相似文献   

15.
Cyclostreptin (FR182877), a bacterial natural product, was reported to have weak paclitaxel-like activity with tubulin but antitumor activity in vivo. We used synthetic cyclostreptin in studies of its mechanism of action. Although less potent than paclitaxel in several human cancer cell lines, cyclostreptin was active against cells resistant to paclitaxel and epothilone A. At equitoxic concentrations with paclitaxel, cyclostreptin was more effective in arresting MCF-7 cells in mitosis and equivalent in bundling microtubules in PtK(2) cells. Tubulin assembly with paclitaxel occurs at low temperatures and in the absence of GTP or microtubule-associated proteins (MAPs). Brisk assembly with cyclostreptin required MAPs, GTP, and higher reaction temperatures. On the basis of turbidimetry, cyclostreptin-induced microtubules were more stable in the cold than the paclitaxel-induced polymer. Moreover, at 37 degrees C cyclostreptin was a strong competitive inhibitor of the binding of radiolabeled paclitaxel to tubulin polymer, with an apparent K(i) value of 88 nM. Competition studies versus a fluorescent taxoid across a temperature range, in comparison with paclitaxel and docetaxel, showed that only the binding of cyclostreptin to microtubules was markedly reduced at 4 degrees C versus temperatures over 30 degrees C. The binding of cyclostreptin to microtubules was characterized by a relatively greater endothermic and entropic profile as compared with those of the taxoid binding reactions, which are characterized more by exothermic and enthalpic interactions. Molecular modeling showed that cyclostreptin formed a pharmacophore with taxoids but formed hydrogen bonds only with the S9-S10 and M loops in the taxoid site. Initial studies also indicate that, relative to paclitaxel, cyclostreptin is more deficient in nucleation than elongation of polymer.  相似文献   

16.
Novel micelles, comprising hydrophilic PEG shells, hydrophobic PMMA cores, and thermosensitive P(NIPAAm-co-HMAAm) segments were self-assembled from the biotin-PEG-b-P(NIPAAm-co-HMAAm)-b-PMMA triblock copolymer. The thermosensitive micelles exhibited superior stability and showed thermotriggered drug release behavior upon temperature alterations. The fluorescence spectroscopy and confocal microscopy studies confirmed that the self-assembled biotinylated micelles can be specifically and efficiently bonded to cancer cells with the administration of biotin-transferrin, suggesting that the multifunctional micelles have great potential as drug carriers for tumor targeting chemotherapy.  相似文献   

17.
18.
A thermo-responsive poly{γ-2-[2-(2-methoxyethoxy)ethoxy]ethoxy-ε-caprolactone}-b-poly(γ-octyloxy-ε-caprolactone) (PMEEECL-b-POCTCL) diblock copolymer was synthesized by ring-opening polymerization using tin octanoate (Sn(Oct)(2)) catalyst and a fluorescent dansyl initiator. The PMEEECL-b-POCTCL had a lower critical solution temperature (LCST) of 38 °C, and it was employed to prepare thermally responsive micelles. Nile Red and Doxorubicin (DOX) were loaded into the micelles, and the micellar stability and drug carrying ability were investigated. The size and the morphology of the cargo-loaded micelles were determined by DLS, AFM, and TEM. The Nile-Red-loaded polymeric micelles were found to be stable in the presence of both fetal bovine serum and bovine serum albumin over a 72 h period and displayed thermo-responsive in vitro drug release. The blank micelles showed a low cytotoxicity. As comparison, the micelles loaded with DOX showed a much higher in vitro cytotoxicity against MCF-7 human breast cancer cell line when the incubation temperature was elevated above the LCST. Confocal laser scanning microscopy was used to study the cellular uptake and showed that the DOX-loaded micelles were internalized into the cells via an endocytosis pathway.  相似文献   

19.
Effect of temperature shift during culture period on cell growth and paclitaxel was investigated to optimize paclitaxel production in suspension culture of Taxus chinensis. Cell growth showed the optimum at 24 degrees C while paclitaxel synthesis showed the maximum at 29 degrees C. To minimize the inhibitory effect of higher temperature on cell growth, temperature was shifted after a certain period of culture time at 24 degrees C. Paclitaxel synthesis in plant cell culture increased dramatically during day 14 to day 21 regardless of treatment, reaching the maximum production of 137.5 mg paclitaxel/L. When the temperature was maintained at 29 degrees C after day 21, the specific productivity of paclitaxel was sustained for prolonged period of 42 days. The possible relationship between temperature and paclitaxel synthetic pathway was also suggested.  相似文献   

20.
Giant and stable worm micelles formed from poly(ethylene glycol) (PEG)-based diblock copolymer amphiphiles have the potential advantage compared to smaller assemblies for delivery of a large quantity of hydrophobic drugs or dyes per carrier. Here we show that worm micelles can be targeted to cells with internalization and delivery of nontoxic dyes as well as cytotoxic drugs. Constituent copolymers are end-biotinylated to mediate high affinity binding of worm micelles to both avidin-bearing surfaces and biotin-specific receptors on smooth muscle cells. Pristine worm micelles, that lack biotin, show much less frequent and nonspecific point attachments to the same surfaces. Biotinylated worm micelles prove stable in aqueous solution for at least a month and also prove capable of loading, retaining, and delivering hydrophobic dyes and drugs. The results thus demonstrate the feasibility of targeted delivery by polymeric worm micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号