首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anionic Peptides are molecules rich in aspartic acid (Asp) and/or glutamic acid (Glu) residues in the primary structure. This work presents, for the first time, structural characterization and biological activity assays of an anionic peptide from the venom of the scorpion Tityus stigmurus, named TanP. The three-dimensional structure of TanP was obtained by computational modeling and refined by molecular dynamic (MD) simulations. Furthermore, we have performed circular dichroism (CD) analysis to predict TanP secondary structure, and UV–vis spectroscopy to evaluate its chelating activity. CD indicated predominance of random coil conformation in aqueous medium, as well as changes in structure depending on pH and temperature. TanP has chelating activity on copper ions, which modified the peptide’s secondary structure. These results were corroborated by MD data. The molar ratio of binding (TanP:copper) depends on the concentration of peptide: at lower TanP concentration, the molar ratio was 1:5 (TanP:Cu2+), whereas in concentrated TanP solution, the molar ratio was 1:3 (TanP:Cu2+). TanP was not cytotoxic to non-neoplastic or cancer cell lines, and showed an ability to inhibit the in vitro release of nitric oxide by LPS-stimulated macrophages. Altogether, the results suggest TanP is a promising peptide for therapeutic application as a chelating agent.  相似文献   

3.
The Venezuelan scorpion Tityus discrepans is known to cause human fatalities. We describe the first complete proteomic analysis of its venom. By HPLC 58 different fractions were obtained and 205 different components were identified by MS analysis. Components having molecular masses from 272 to 57 908 amu were found. Forty homogeneous components had their N-terminal amino acid sequence determined by Edman degradation, from which two new peptides named TdK2 and TdK3 (meaning T. discrepans (Td) K(+) channel toxins 2 and 3) were fully characterized. The first contains 34 amino acid residues with a molecular mass of 3451 amu, and the second has 36 amino acids with 3832 amu. Both peptides are tightly bound by three disulfide bridges. TdK2 was shown to block reversibly the Shaker B K(+)-channel expressed heterologously in Sf9 cells. The systematic number assigned to TdK2 is alpha-KTx-18.2 and that of TdK3 is alpha-KTx-18.3. Comparative analysis of the amino acid sequences found suggests that this venom contains peptides highly similar to those that block K(+) channels, as well as those that modify the gating mechanisms of Na(+) channels, found in other scorpions. Additionally, peptides similar to defensins were also identified.  相似文献   

4.
5.
The Colombian scorpion Tityus pachyurus is toxic to humans and is capable of producing fatal accidents, but nothing is known about its venom components. This communication reports the separation of at least 57 fractions from the venom by high performance liquid chromatography. From these, at least 104 distinct molecular weight compounds were identified by mass spectrometry analysis. The complete amino acid sequences of three peptides were determined and the partial sequences of three others were also identified. Electrophysiological experiments conducted with ion-channels expressed heterologously on Sf9 cells showed the presence of a potent Shaker B K(+)-channel blocker. This peptide (trivial name Tpa1) contains 23 amino acid residues closely packed by three disulfide bridges with a molecular mass of 2,457 atomic mass units. It is the third member of the sub-family 13, for which the systematic name is proposed to be alpha-KTx13.3. The mice assay showed clearly the presence of toxic peptides to mammals. One of them named Tpa2, containing 65 amino acid residues with molecular mass of 7,522.5 atomic mass units, is stabilized by four disulfide bridges. It was shown to modify the Na(+)-currents of F-11 and TE671 cells in culture, similar to the beta scorpion toxins. These results demonstrate the presence of toxic peptides in the venom of T. pachyurus and confirm that accidents with this species of scorpion should be considered an important human hazard in Colombia.  相似文献   

6.
A new peptide with 61 amino acids cross-linked by 4 disulfide bridges, with molecular weight of 6938.12 Da, and an amidated C-terminal amino acid residue was purified and characterized. The primary structure was obtained by direct Edman degradation and sequencing its gene. The peptide is lethal to mammals and was shown to be similar (95% identity) to toxin Ts1 (gamma toxin) from the Brazilian scorpion Tityus serrulatus; it was named Tt1g (from T. trivittatus toxin 1 gamma-like). Tt1g was assayed on several sub-types of Na+-channels showing displacement of the currents to more negative voltages, being the hNav1.3 the most affected channel. This toxin displays characteristics typical to the β-type sodium scorpion toxins. Lethality tests and physiological assays indicate that this peptide is probably the most important toxic component of this species of scorpion, known for causing human fatalities in the South American continent.  相似文献   

7.
Toxin gamma is a basic, low-molecular-weight, neurotoxic protein, isolated from the venom of the Brazilian scorpion, Tityus serrulatus. Raman spectra (400-1800 cm-1 region) of this toxin in both the lyophilized state and in 0.1 M acetate buffer (pH 4.5) and the infrared spectrum (700-4000 cm-1 region) of a solid film were investigated. From the vibrational spectra, it can be concluded that the polypeptide backbone of toxin gamma consists of a mixture of the different secondary structures, with predominance of beta-sheet, followed by unordered structure and alpha-helix, with some evidence of beta-turn structures. The four disulfide bridges assume the gauche-gauche-gauche conformation of the CCSSCC fragments. The intensity ratio of the doublet at 853 and 828 cm-1 suggests that four out of the five tyrosine residues are exposed. The three tryptophan residues are exposed on the surface, and the single methionine residue assume the gauche-gauche conformation. Toxin gamma retains full activity in the pH 4.5-7.5 range, but is almost completely inactivated at pH 11.5.  相似文献   

8.
A novel toxin (TdK1) was purified from the venom of the scorpion Tityus discrepans, sequenced and functionally characterized. It contains 37 amino acid residues and blocks reversible the shakerB K+ channel expressed in SF9 cells with a Kd in the order of 280 nM. The proposed systematic nomenclature for this peptide is alpha-KTx4.3.  相似文献   

9.
10.
Scorpion venom are complex mixtures of peptides, known to cause impairment of ion-channel function in biological membranes. This report describes the separation of approximately 60 different components by high performance liquid chromatography and the characterization by Edman degradation and mass spectrometry of 26 peptides from the soluble venom of the Amazonian scorpion Tityus cambridgei. One of these peptides, named Tc48a, was fully characterized. It contains 65 amino acid residues, the C-terminal residue is amidated and it affects Na(+)-channels with a K(d) of about 82 nM. Furthermore, this report shows the thermo-instability of scorpion toxins subjected to electron spray ionization-mass spectrometry (ESI-MS). When a proline residue is located near the N-terminal region of the toxin, not stabilized by disulfide bridges, artificial components are generated by the mass spectrometer conditions, due to the cleavage of the peptide bond at the proline positions. This phenomenon was confirmed by using four model proteins (variable regions of immunoglobulins) studied by ESI-MS and matrix assisted laser desorption ionization-time of flight (MALDI-TOF)/MS.  相似文献   

11.
Venoms have evolved over millions of years into potent cocktails of bioactive peptides and proteins. These compounds can be of great value to the pharmaceutical industry for numerous clinical applications. In this study, a novel proteomic - bioinformatic approach was utilised, where chromatography followed by gel electrophoresis was utilised to separate the venom peptides/proteins of Heterometrus longimanus (Asian black scorpion). Purified peptides were analysed by tandem mass spectrometry, de novo sequenced and then homology matched against known peptides in the Swiss-Prot protein database. Numerous potentially biologically active peptide matches were discovered, and a simple scoring system applied to putatively assign functions to the peptides. As a validation of this approach, the functional composition of the experimentally derived proteome is similar to that of other scorpions, and contains a potent mix of toxins, antimicrobials and ionic channel inhibitors.  相似文献   

12.
The water-soluble part of the dried venom from the scorpion, Tityus serrulatus Lutz and Mello (range, Southeastern Brazil), showed 16 polypeptide bands on polyacrylamide gel electrophoresis. This material exhibited toxic and hyaluronidase activity but no phospholipase, phosphodiesterase, protease, or fibrinolytic activity. Fractionation on glycinamide-treated Sephadex G-50 afforded three protein fractions, which were non-toxic, equitoxic, and three times more toxic than the water-soluble venom. Subsequent separation of the toxic fractions on carboxymethyl-cellulose with phosphate buffers furnished five toxic components, which were further purified on carboxymethyl-cellulose with a salt gradient in acetate buffer. Toxin γ, the major and most basic toxin, is a 62-residue protein that, unlike other scorpion toxins, contains methionine. Automated Edman degradation showed the amino-terminal sequence to be H-Lys-Glu-Gly-Tyr-Leu-Met-Asp-His-Glu-Gly-Cys-Lys-Leu-Ser-Cys-Phe-Ile-Arg-Pro-Ser-Gly-Tyr-Cys-Gly-Arg-Glu-Cys-Gly-Ile-. Toxin γ is the first example of a fifth structural type of mammalian toxin from scorpion venom. Its amino-terminal sequence shows greater homology with toxins similar to Centruroides suffusus suffusus toxin III and Androctonus australis toxin II than with toxins similar to A. australis toxin I or Bhutus occitanus tunetanus toxin I.  相似文献   

13.
The influence of venom (TSV) from the Brazilian scorpion, Tityus serrulatus, on exocrine pancreatic secretion was studied in relation to known cholinergic and peptidergic secretagogue activity. Pulse-labeling followed by chase incubation in the presence of secretagogues and various pharmacological agents revealed unique physiological characteristics of TSV in guinea pig pancreatic lobules. Exocytotic discharge of newly synthesized 3H-labeled proteins during a 3-h chase incubation showed a marked increase over basal discharge levels using logarithmic TSV doses of 0.10 to 100 micrograms/ml. This stimulation was comparable to maximal values elicited by carbachol, cholecystokinin-octapeptide (CCK-8) or caerulein and discharge kinetics were similar. TSV-mediated secretion was ATP and calcium dependent and partially inhibited by atropine. Only tetrodotoxin completely blocked TSV stimulation of newly synthesized protein discharge. Both botulinum toxin and curare had no effect on venom stimulation, indicating that TSV interaction with exocrine pancreatic cells occurs postsynaptically. Verapamil, a calcium channel antagonist, produced a moderate inhibition of TSV stimulation. When antagonists to the cholecystokinin (CCK) receptor were incubated with TSV, no change in secretory activity occurred. Therefore, TSV does not bind to CCK receptors and probably operates through its own receptor which may be an ion channel. Additionally, morphological studies in vitro revealed a high level of pancreatic secretory activity as evidenced by dense secretory acinar luminal content, reduction in zymogen granule (ZG) population, and development of exocytotic images.  相似文献   

14.
Previous research from our Laboratory has shown a greater susceptibility of young animals, when compared to adults, to envenomation by tityustoxin (TsTX), one of the main toxins from Tityus serrulatus scorpion venom. Our hypothesis is that a differential body distribution of TsTX among adult and young animals could account for the worse prognosis of scorpion envenomation in infants. Thus, TsTX labeled with technetium-99m was injected (6 microg, subcutaneous) in adult (150-160 day-old) and young (21-22 day-old) male rats. Groups of animals were sacrificed at different times after TsTX injection (0.08, 1.0, 3.0, 6.0, 12.0 and 24.0 hours) under Urethane anesthesia (140 mg/100 g, i.p.). The brain, heart, lungs, liver, kidneys, spleen and thyroid were excised and blood collected. Young rats presented a shorter latency toxin concentration peak in all studied organs except for the liver and the kidney, when compared to adults. The ratio between the area under the curve of the toxin concentration in each organ and that in blood (Kp) indicates higher accumulation in the organs of young animals mainly for brain, liver and heart. These observations suggest a faster toxin distribution in the organs of young rats. The higher uptake of TsTX in the brain is suggestive of a greater permeability for the toxin along the blood-brain barrier of young rats. In conclusion, the higher uptake in heart, together with data from the brain, may help to elucidate the clinical manifestations frequently observed in children under scorpion envenomation.  相似文献   

15.
The complete sequence of the toxin TsTX-VI from the venom of the scorpionTityus serrulatus Lutz and Mello is presented. The sequence has been determined by automated Edman analysis of the reduced and carboxymethylated protein as well as of the resulting peptides, obtained fromS. aureus protease and tryptic digestions. TsTX-VI is composed of 62 residues and has a calculated molecular weight of 6717. Homology studies with other scorpion toxins show that TsTX-VI is more similar to the Old World than to the North American scorpion toxins. The hydropathic index indicates that TsTX-VI is more hydrophobic than Ts-. Toxicity studies carried out in mice demonstrate that i.v. injection of TsTX-VI is unable to evoke the usual symptoms induced by the typical neurotoxins of this venom, but only a generalized allergic reaction. These properties are important in clarifying the relationship between primary structure and biological function of scorpion toxins.  相似文献   

16.
A cDNA encoding the main Tityus serrulatus beta-neurotoxin was isolated from a venom gland cDNA library by using an oligonucleotide probe. The amino acid sequence deduced from the cDNA nucleotide sequence indicated that the toxin is the processed product of a precursor containing: (i) a signal peptide of 20 residues; (ii) the amino acid sequence of the mature toxin; and (iii) an extra Gly-Lys-Lys tail at the C-terminal end before the termination codon. Thus, in addition to the removal of the signal peptide by a signal peptidase, the generation of the mature toxin requires both a post-translational cleavage by a carboxypeptidase specific for basic residues and the action of an alpha-amidating enzyme. These results also show that the biosynthetic pathway for beta-toxins of 'New World' scorpion venoms is similar to that already described for alpha-toxins of 'Old World' scorpion venoms.  相似文献   

17.
A fossil scorpion, Tityus geratus (Scorpioncs: Buthidae) n. sp., is described from Dominican amber. This is the third described amber Tityus sp. and the third Dominican amber scorpion. On the basis of the amber finds and available knowledge on the present distribution of Tityus spp. in the Antilles, the vicariance model of Caribbean biogeography can be evoked to best explain the present distribution of this genus.  相似文献   

18.
We propose a simple mathematical model to account for the coupling of secretion rates of bile salts, lecithin, and cholesterol into bile. The model assumes that: 1) molecules of "biliary" lecithin and cholesterol enter a functional compartment located in the endoplasmic reticulum of the hepatocyte from which they are secreted into bile, and in the case of cholesterol, also catabolized to bile salts; 2) the rates at which lecithin and cholesterol enter the "secretory" compartment are regulated independently by feedback loops that control their synthesis and/or uptake; 3) lecithin secretion is coupled by an unknown transport mechanism, possibly micellar or vesicular, to the flux of bile salts passing through the compartment; 4) cholesterol secretion is coupled by a similar mechanism to lecithin secretion and not to bile salt secretion directly; and 5) bile salt synthesis is proportional to the cholesterol content of the compartment. The model predicts that in the steady state the dependences, lecithin secretion vs bile salt secretion; cholesterol secretion vs lecithin secretion; and cholesterol secretion vs bile salt secretion, will all have the form of rectangular hyperbolae. Four independent parameters related to the postulated mechanisms of biliary lipid synthesis, uptake, and transport determine the quantitative features of these hyperbolae. These four "secretion parameters" also determine how the biliary lipid composition of hepatic and "fasting" gallbladder bile varies with bile salt secretion rate. A quantitative analysis of biochemical and physiological data on biliary lipid secretion in rat, dog, and man confirms the general predictions of the model. Deductions of the secretion parameters are made for each species and are compared with other relevant data on biliary lipid metabolism. From this analysis, we offer new insights into: i) the species differences in biliary lipid secretion and bile composition; ii) the influence of obesity on biliary lipid secretion in man; and iii) the causes of cholesterol super-saturation in fasting gallbladder bile.  相似文献   

19.
AIMS: The effects of Tityus serrulatus venom (TSV) were analysed with respect to the susceptibility of four isogenic mouse, the symptoms following injection of venom and the inflammatory mediators in an experimental model of severe envenomation induced in mice. METHODS: The susceptibility was analysed by lethal dose (LD50) determination, including the symptoms observed during envenomating and glucose levels. The detection of cytokines in serum from mice were analysed using enzyme-linked immunosorbent assay, and nitric oxide (NO) was analysed using nitrite determination. RESULTS: The estimated LD50 values were in micrograms per 100 microliters, and the susceptibility of mice to TSV varies with: (a) mouse strain and route of injection (A/J < BALB/c < C57Bl/6 = DBA); (b) mouse strain and sex (A/J female and male < BALB/c female and male); and (c) body weight (all groups of A/J < BALB/c groups). Among the mouse strains studied, BALB/c mice presented moderate sensibility to TSV, with changes in specific signs and serum levels of glucose, several cytokines and NO, when injected intraperitoneally (i.p.) with 1 LD50 of venom. Sweating, salivation and tremor were the specific signs that preceded death. The maximum levels of glucose in sera from mice injected i.p. with 1 LD50 of TSV were observed 60-90 min post-injection. Significant differences were observed in the time-course of cytokine levels, and the venom induced marked elevations of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10 and interferon gamma (IFN-gamma). The maximum levels of IL-1alpha and IL-1beta were observed 2 h post-injection. The more pronounced levels of IL-6 were observed 4 h post-injection. There was an early increase in IFN-gamma followed by an even higher level after 4 h. IL-10 levels peaked between 6 and 8 h, and this cytokine probably modulates the secretion of IFN-gamma. Tumor necrosis factor release was not detected in BALB/c mice injected with TSV. NO levels attained maximal release after 2 h, following venom injection, while a second peak for NO was at 6 h. CONCLUSIONS: These findings indicate that the susceptibility to the systemic effects of the venom varies among mice of different haplotypes, and that the cytokines such as IL-1, IL-6, IFN-gamma and NO are strongly involved in the pathogenesis caused by this venom and are correlated with the severity of envenomation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号