首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With the remarkable development of nanotechnology in recent years, new drug delivery approaches based on the state-of-the-art nanotechnology have been receiving significant attention. Nanoparticles, an evolvement of nanotechnology, are increasingly considered as a potential candidate to carry therapeutic agents safely into a targeted compartment in an organ, particular tissue or cell. These particles are colloidal structures with a diameter smaller than 1,000 nm, and therefore can penetrate through diminutive capillaries into the cell's internal machinery. This innovative delivery technique might be a promising technology to meet the current challenges in drug delivery. When loaded with a gene or drug agent, nanoparticles can become nanopills, which can effectively treat problematical diseases such as cancer. This article summarizes different types of nanoparticles drug delivery systems under investigation and their prospective therapeutic applications. Also, this article presents a closer look at the advances, current challenges, and future direction of nanoparticles drug delivery systems.  相似文献   

2.
Pharmaceutical inhalation aerosols have been playing a crucial role in the health and well being of millions of people throughout the world for many years. The technology's continual advancement, the ease of use and the more desirable pulmonary-rather-than-needle delivery for systemic drugs has increased the attraction for the pharmaceutical aerosol in recent years. But administration of drugs by the pulmonary route is technically challenging because oral deposition can be high, and variations in inhalation technique can affect the quantity of drug delivered to the lungs. Recent advances in nanotechnology, particularly drug delivery field have encouraged formulation scientists to expand their reach in solving tricky problems related to drug delivery. Moreover, application of nanotechnology to aerosol science has opened up a new category of pharmaceutical aerosols (collectively known as nanoenabled-aerosols) with added advantages and effectiveness. In this review, some of the latest approaches of nano-enabled aerosol drug delivery system (including nano-suspension, trojan particles, bioadhesive nanoparticles and smart particle aerosols) that can be employed successfully to overcome problems of conventional aerosol systems have been introduced.  相似文献   

3.
Nanotechnology is the creation and use of materials and devices on the same scale as molecules and intracellular structures, typically less than 100?nm in size. It is an emerging science and has made its way into pharmaceuticals to significantly improve the delivery and efficacy of drugs in a number of therapeutic areas, due to development of various nanoparticle-based products. In recent years, there has been increasing evidence that nanotechnology can help to overcome many of the ocular diseases and hence researchers are keenly interested in this science. Nanomedicines offer promise as viable alternatives to conventional drops, gels or ointments to improve drug delivery to the eye. Because of their small size, they are well tolerated, thus preventing washout, increase bioavailability and also help in specific drug delivery. This review describes the application of nanotechnology in the control of human diseases with special emphasis on various eye and ocular surfaces diseases.  相似文献   

4.
随着核酸纳米技术的飞速发展,核酸自组装纳米载体已成为药物递送领域的研究热点。针对核酸自组装纳米载体在药物递送中的应用进展进行了系统综述,讨论了不同的核酸自组装策略,阐述了多种靶向递送和药物控制释放方法,同时,总结了核酸自组装纳米递送载体在蛋白质药物、核酸药物、小分子药物和纳米药物递送中的应用,并针对该领域的挑战和未来发展趋势进行了总结和展望,以期为药物递送领域和新型药物系统研究提供参考。  相似文献   

5.
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as “S-layer”, bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.  相似文献   

6.
Liposomal drug-delivery systems have come of age in recent years, with several liposomal drugs currently in advanced clinical trials or already on the market. It is clear from numerous pre-clinical and clinical studies that drugs, such as antitumor drugs, packaged in liposomes exhibit reduced toxicities, while retaining, or gaining enhanced, efficacy. This results, in part, from altered pharmacokinetics, which lead to drug accumulation at disease sites, such as tumors, and reduced distribution to sensitive tissues. Fusogenic liposomal systems that are under development have the potential to deliver drugs intracellularly, and this is expected to markedly enhance therapeutic activity. Advances in liposome design are leading to new applicants for the delivery of new biotechology products, such as recombinant proteins, antisense oligonucleotides and cloned genes.  相似文献   

7.
Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug) were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation). We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin) were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems.  相似文献   

8.
The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s) may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells, and the potential toxicity, greatly depends on the actual composition of the nanoparticle formulation. This paper provides an overview on some of the currently used systems for drug delivery. Besides the potential beneficial use also attention is drawn to the questions how we should proceed with the safety evaluation of the nanoparticle formulations for drug delivery. For such testing the lessons learned from particle toxicity as applied in inhalation toxicology may be of use. Although for pharmaceutical use the current requirements seem to be adequate to detect most of the adverse effects of nanoparticle formulations, it can not be expected that all aspects of nanoparticle toxicology will be detected. So, probably additional more specific testing would be needed.  相似文献   

9.
在新药研发过程中,约有40%的药物存在溶解性差的问题,限制了药物的开发与应用。纳米混悬剂是20世纪末发展起来的一种纳米药物传递系统,可增加难溶性药物的溶解度和溶出速率、改变药物的体内药物动力学特征、提高口服生物利用度、安全性和有效性。纳米混悬剂不但适用于水溶性差的药物,而且适用于水溶性、脂溶性均较差的药物,其制备方法主要包括"bottom up"和"top down"两种。本文从纳米混悬剂的特点、理论基础、专利技术及应用等方面对纳米混悬剂的研究进展进行了综述。纳米混悬剂对改善难溶性药物的溶出、吸收,提高难溶性药物的有效性、安全性等方面具有显著优势,且适合工业化生产,已有越来越多的产品问世。纳米混悬技术是未来药物传递系统的发展方向之一,将具有良好的应用前景。  相似文献   

10.
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability, and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug–drug or drug–additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water-soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g., as osmotic pumps) and/or hydrophobic CDs. New controlled delivery systems based on nanotechnology carriers (nanoparticles and conjugates) have also been reviewed.  相似文献   

11.
DNA纳米技术是基于沃森克里克碱基配对原则产生可编程核酸结构的技术。因其具有高精度的工程设计、前所未有的可编程性和内在的生物相容性等特点,运用该技术合成的纳米结构不仅可以与小分子、核酸、蛋白质、病毒和癌细胞相互作用,还可以作为纳米载体,递送不同的治疗药物。DNA折纸作为一种有效的、多功能的方法来构建二维和三维可编程的纳米结构,是DNA纳米技术发展的一个里程碑。由于其高度可控的几何形状、空间寻址性、易于化学修饰,DNA折纸在许多领域具有巨大的应用潜力。本文通过介绍DNA折纸的起源、基本原理和目前进展,归纳总结了运用DNA折纸进行药物装载和释放的方式,并基于此技术,展望了今后的发展趋势以及所面临的机遇和挑战。  相似文献   

12.
In this review, we discuss Nanotechnology models, which have been developed recently in cancer treatment. Nanotechnology manipulates matter at the atomic and molecular scale to create materials with new and advanced properties. Nano-biotechnology consists of the branches of nanotechnology that have been applied in biology (molecular and cellular genetics) and biotechnology. Nano-biotechnology allows us to put components and compounds into cells and build new materials using new methods like assembly. Cancer is a disease caused by an uncontrolled division of abnormal cells in a part of the body. Its therapeutic methods include chemotherapy, radiation, or surgery, but the effects of these techniques are not only on tumor tissue and may affect healthy tissues. Nano-Biotech applications regarding cancer include drug delivery, treatment, and foresight therapy. This review article aims to obtain a proper mentality of the current technologies of Nano-biotechnology for cancer treatment.  相似文献   

13.
The era of nanotechnology has allowed new research strategies to flourish in the field of drug delivery. Nanoparticle-based drug delivery systems are suitable for targeting chronic intracellular infections such as tuberculosis. Polymeric nanoparticles employing poly lactide-co-glycolide have shown promise as far as intermittent chemotherapy in experimental tuberculosis is concerned. It has distinct advantages over the more traditional drug carriers, i.e. liposomes and microparticles. Although the experience with natural carriers, e.g. solid lipid nanoparticles and alginate nanoparticles is in its infancy, future research may rely heavily on these carrier systems. Given the options for oral as well as parenteral therapy, the very nature of the disease and its complex treatment urges one to emphasize on the oral route for controlled drug delivery. Pending the discovery of more potent antitubercular drugs, nanotechnology-based intermittent chemotherapy provides a novel and sound platform for an onslaught against tuberculosis.  相似文献   

14.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   

15.
Drug delivery into the brain was difficult due to the existence of blood brain barrier, which only permits some molecules to pass through freely. In past decades, nanotechnology has enabled many technical advances including drug delivery into the brain with high efficiency and accuracy. In the present paper, we summarize recent important advances in employing nanotechnology for drug delivery to the brain as well as controlled drug release.  相似文献   

16.
Nanoparticles for the delivery of genes and drugs to human hepatocytes   总被引:17,自引:0,他引:17  
Hepatitis B virus envelope L particles form hollow nanoparticles displaying a peptide that is indispensable for liver-specific infection by hepatitis B virus in humans. Here we demonstrate the use of L particles for the efficient and specific transfer of a gene or drug into human hepatocytes both in culture and in a mouse xenograft model. In this model, intravenous injection of L particles carrying the gene for green fluorescent protein (GFP) or a fluorescent dye resulted in observable fluorescence only in human hepatocellular carcinomas but not in other human carcinomas or in mouse tissues. When the gene encoding human clotting factor IX was transferred into the xenograft model using L particles, factor IX was produced at levels relevant to the treatment of hemophilia B. The yeast-derived L particle is free of viral genomes, highly specific to human liver cells and able to accommodate drugs as well as genes. These advantages should facilitate targeted delivery of genes and drugs to the human liver.  相似文献   

17.
Stem cells can be used to repair dysfunctional and injured (or cancerous) tissues by delivering therapeutics. However, in comparison with other cells, it is harder to transfect drugs or genes into stem cells. Dendrimers have been considered as efficient vectors to deliver both genes and drugs to stem cells due to their unique properties including adjustable molecular weight and size, low toxicity, high loading capacity, and having multiple peripheral chemical agents which can be functionalized to improve deliverance efficiency. In this review, we discuss dendrimer-mediated drug and gene delivery to stem cells as cellular vehicles and the role of this strategy in treating a variety of disorders via regenerative medicine approaches.  相似文献   

18.
纳米技术应用于药物载体的研究一直是近年生物医学所关注的热点。纳米药物载体在实现靶向性给药、缓释药物、提高难溶性药物与多肽药物的生物利用度、降低药物的毒副作用等方面表现出明显的优势。本文就近些年常见的纳米载药体的种类及其特性、常用制备方法、靶向治疗方面的研究进行综述,并对未来发展前景进行展望。  相似文献   

19.
The application of nanotechnology in medicine, known as nanomedicine, has introduced a plethora of nanoparticles of variable chemistry and design considerations for cancer diagnosis and treatment. One of the most important field is the design and development of pharmaceutical drugs, based on targeted drug delivery system (TDDS). Being inspired by physio-chemical properties of nanoparticles, TDDS are designed to safely reach their targets and specifically release their cargo at the site of disease for enhanced therapeutic effects, thereby increasing the drug tissue bioavailability. Nanoparticles have the advantage of targeting cancer by simply being accumulated and entrapped in cancer cells. However, even after rapid growth of nanotechnology in nanomedicine, designing an effective targeted drug delivery system is still a challenging task. In this review, we reveal the recent advances in drug delivery approach with a particular focus on gold nanoparticles. We seek to expound on how these nanomaterials communicate in the complex environment to reach the target site, and how to design the effective TDDS for complex environments and simultaneously monitor the toxicity on the basis of designing such delivery complexes. Hence, this review will shed light on the research, opportunities and challenges for engineering nanomaterials with cancer biology and medicine to develop effective TDDS for treatment of cancer.  相似文献   

20.
In recent years, there has been a considerable interest in the development of novel drug delivery systems using nanotechnology. Nanoparticles represent a promising drug delivery system of controlled and targeted release. In this context, nanosuspensions will be effective in increasing the solubility and bioavailability of poorly soluble drugs. This review focuses on advantages, method of preparation, physical characteristics, and evaluation of drug nanosuspensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号