首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Both the fast and slow muscle fibres of advanced teleost fish are multiply innervated. The fraction of slow-fibre volume occupied by mitochondria is 31.3%, 25.5% and 24.6%, respectively, for the myotomal muscles of brook trout (Salvelinus fontinalis), crucian carp (Carassius carassius), and plaice (Pleuronectes platessa), respectively. The corresponding figures for the fast muscles of these species are 9.3%, 4.6% and 2.0%, respectively. Cytochrome-oxidase and citrate-synthetase activities in the fast muscles of 9 species of teleost range from 0.20–0.93 moles substrate utilised, g wet weight muscle-1 min-1 (at 15° C) or around 4–17% of that of the corresponding slow fibres. Ultrastructural analyses reveal a marked heterogeneity within the fast-fibre population. For example, the fraction of fibres with <1% or >10% mitochondria is 0,4,42% and 36, 12 and 0%, respectively, for trout, carp and plaice. In general, small fibres (<500 m2) have the highest and large fibres (>1,500 m2) the lowest mitochondrial densities. The complexity of mitochondrial cristae is reduced in fast compared to slow fibres.Hexokinase activities range from 0.4–2.5 in slow and from 0.08–0.7 moles, g wet weight-1 min-1 in fast muscles, indicating a wide variation in their capacity for aerobic glucose utilisation. Phosphofructokinase activities are 1.2 to 3.6 times higher in fast than slow muscles indicating a greater glycolytic potential. Lactate dehydrogenase activities are not correlated with either the predicted anaerobic scopes for activity or the anoxic tolerances of the species studied. The results indicate a considerable variation in the aerobic capacities and principal fuels supporting activity among the fast muscles of different species. Brook trout and crucian carp are known to recruit fast fibres at low swimming speeds. For these species the aerobic potential of the fast muscle is probably sufficient to meet the energy requirements of slow swimming.  相似文献   

2.
Abstract The running speed of Agama stellio stellio was 2.1 ± 0.3 m s?1 at preferred body temperature (Tb, 30°C). To account for sprint locomotion, we meaured two mechanical parameters and examined the ultrastructural features of a major locomotory muscle in normal walking and running locomotion, the iliofibularis muscle, which is considered to act as an extensor of the lower hind limb. The time to peak isometric twitch tension and time to half relaxation were 52 ± 7 ms and 76 ± 5 ms, respectively. The comparative ultrastructure of the fast and slow fibes provides structure-to-function correlation. The sarcoplasmic reticulum and T-tubules system are abundant in fast fibres which serve to transmit Ca2+ and spread the excitatory impulse intracellularly with great rapidity. In contrast, the membranous system of slow fibres is relatively poor and this indicates slow impulse propagation. Thus, these results show that the fast locomotion of Agama stellio stellio can, in part, be explained by the physiology and ultrastructure of the fibres of the locomotory muscles.  相似文献   

3.
Summary Tench (Tinca tinca) were acclimated to either aerated (P O 2 17.6 KPa) or hypoxic (P O 2 1.5 KPa) water for 6 weeks.Acclimation to hypoxia resulted in a decrease in mitochondrial volume fraction in both slow (22.9 to 15.0 %) and fast glycolytic (4.5 to 1.8 %) myotomal muscles fibres (P<0.01).Intermyofibrillar mitochondrial populations (4.4 to 1.2% slow; 0.6 to 0.04% fast fibres) were affected to a greater extent than those in the subsarcolemmal zone (18.5 to 13.8% slow; 3.9 to 1.8% fast fibres). After acclimation to hypoxia, cytochrome-oxidase activities decreased by 31 and 33 % in slow and fast fibres, respectively, but were maintained in the liver.Fibre size remained unchanged and actively differentiating fibres were observed in muscles from both groups of fish. Hypoxia resulted in a significant increase in myofibrillar volume fraction in both slow (43.1 to 56.1 %) and fast glycolytic fibres (73.1 to 82.7%) (P<0.05).Glycogen concentrations (mg/100g tissue) for liver (6616) slow muscle (1892) and fast muscle (334) were similar for fish acclimated to aerated or hypoxic water. Acclimation to hypoxia increased carnitine palmitoyl transferase activity (moles substrate utilised g·dry wt-1 min-1) in slow (0.42 to 1.1), fast glycolytic muscle (<0.01 to 0.15) and liver (1.1 to 3.7) indicating an enhanced capacity for fatty acid oxidation.Phosphofructokinase activities of fast glycolytic fibres were similar in fish acclimated to either aerated or hypoxic water, consistent with an unaltered capacity for anaerobic glycogenolysis. Hexokinase activities (moles substate utilised, g·dry wt-1 min-1) decreased in fast fibres (1.2 to 0.4) but were maintained in the slow muslce (2.1 to 2.5) and liver (4.5 to 4.8) of hypoxic fish. The activities of phosphofructokinase in slow muscle and phosphofructokinase, pyruvate kinase and lactate dehydrogenase in liver were two times higher in fish acclimated to hypoxia. An enhanced capacity for glycolysis in these tissues may reflect a reduced threshold for anaerobic metabolism during activity and/or an adaptation for acute exposure to anoxia in fish acclimated to hypoxia.Abbreviations/Glossary CO cytochrome oxidase activity - CPT carnitine palmitoyltransferase activity - HK hexokinase activity - LDH lactate dehydrogenase activity - PFK phosphofructokinase activity - PK pyruvate kinase activity - Vv volume fractions of cell components - normoxic fish acclimated to aerated water - hypoxic fish acclimated to reduced oxygen tensions - P O 2 partial pressure of oxygen tension A preliminary account of part of this work was presented at theXth European Meeting on Muscle and Cell Motility held at Galway, Ireland, in September 1981  相似文献   

4.
Ćulić  M.  Šaponjić  J.  Janković  B.  Kalauzi  A.  Jovanović  A. 《Neurophysiology》2001,33(1):48-52
In anesthetized Wistar rats, we studied the effect of electrical stimulation of the locus coeruleus (LC) on the firing rates of Purkinje cells using spectral analysis. The frequency of extracellularly recorded activity of Purkinje cells was measured before and during the 1st, 5th, 6th, and 11th min after cessation of 10-sec-long LC stimulations. Spectral analysis of the Purkinje cell firing rates (imp./bin, the bin duration was 2-8 sec) for 60- to 120-sec-long intervals was performed using fast Fourier transformation after digital conversion of unitary spikes. Mean power spectra of the Purkinje cell firing rates (derived from 8-sec-long consecutive epochs at a sampling rate of 256 sec-1) showed an increase in the slow frequency range (0.1-1.0 Hz) after LC stimulation, particularly due to the slowest components (below 0.5 Hz). This effect lasted more than 1 min and usually less than 6 min after cessation of LC stimulation and could be interpreted as the development of slow oscillations in the Purkinje cell firing. Our results suggest that slow oscillations of the firing rate of cerebellar output neurons, induced by LC stimulation, reflect a specific coordination of the cerebellar neuronal activities (important for a central norepinephrine influence) in regulation of different pathological states.  相似文献   

5.
The time course of the [K+]e increase elicited by terminal anoxia or by electroconvulsive shock (ECS) was compared in various parts of the rat brain. The [K+]e was measured with ion-selective microelectrodes stereotaxically introduced into the target area. Respiration arrest induced in anesthetized rats a slow [K+]e increase to about 6–10 mM followed by an abrupt rise to 30–50 mM (doubling time 5–14 sec) in the neocortex, hippocampus, amygdala, caudate nucleus, and thalamus. In the reticular formation, zona incerta, and lateral hypothalamus the second phase of [K+]e increase was much slower (doubling time 30–50 sec) and lacked the autoregenerative character. Trans-pinnate ECS (50 Hz, 0.5 sec, 80 mA), administered to rats immobilized with gallamine triethiodide, elicited a generalized [K+]e increase of the spreading depression type in neocortex and hippocampus (40 mM) as well as in the caudate nucleus and thalamus (20–30 mM), followed by slow [K+]e decrease (half-time 40–60 sec). Much lower ECS-induced [K+]e increase (to 5–6 mM) was observed in the reticular formation, zona incerta, lateral hypothalamus and, surprisingly, in the amygdala. It is concluded that the autoregenerative [K+]e release of spreading depression type develops in structures with high density of membranes reacting to partial depolarization by increased sodium permeability.  相似文献   

6.
Following extended periods of relative inactivity, or prior to migration, birds are able to increase the aerobic capacity of their locomotory muscles. Thyroid hormones may influence this process. A preliminary study was undertaken to assess the ability of elevated levels of thyroxine to increase the aerobic capacity of the locomotory and cardiac muscles of adult tufted ducks. Administration of thyroxine in the food for 8 weeks had little effect on body mass or on the masses of the pectoralis, semitendinosus and iliofibularis muscles, although there were increases in resting oxygen consumption and in the mass of the cardiac ventricles. The maximum activity of the aerobic enzyme, citrate synthase, was significantly greater in the left ventricle, liver, and iliofibularis muscles (P<0.005) of treated birds. However, while there was clearly no difference in activity in the semimembranosus leg muscle, that of the pectoralis was not quite significant (P=0.078). It is concluded that addition of supra-physiological levels of exogenous thyroxine may induce a differential increase in the maximum activity of citrate synthase in the locomotor muscles of the tufted duck, which is correlated with the fibre type composition of these muscles. These results are consistent with those found in studies on rats, with slow oxidative fibres being the most sensitive, and fast glycolytic fibres the least sensitive, to thyroxine treatment.Abbreviations BM body mass - CS citrate synthase - CYTOX cytochrome c oxidase - FG last glycolytic - FOG fast oxydative glycolytic - VO2 oxygen consumption - SO slow oxidative - T4 thyroxine - T3 triiodothyronine  相似文献   

7.
Summary Male Wistar rats were made hypothyroid or hyperthyroid over a period of six weeks, by administration of carbimazole or triiodothyronine (T3). Serial frozen sections of soleus and extensor digitorum longus (EDL) muscle were stained histochemically for myosin ATPase, succinic dehydrogenase and phosphorylase. Muscle fibres were classified as either slow twitch oxidative (SO), fast twitch oxidative glycolytic (FOG) or fast twitch glycolytic (FG). In addition the activities of phosphorylase, phosphofructokinase (PFK), fructose-1,6-diphosphatase (FDP), lactate dehydrogenase (LDH), hexokinase, citrate synthetase, cytochrome oxidase, 3-hydroxyacyl-CoA dehydrogenase (HAD) and 5-AMP aminohydrolase were measured in both muscles.Increasing plasma levels of T3 are associated with marked alterations in the fibre type populations in both muscles. In the soleus there is conversion of SO to FOG fibres while in the EDL, FG fibres are converted to FOG fibres. The quantitative changes in metabolic enzyme activity however, are in the main restricted to the soleus. Increased T3 levels result in an increased capacity for the aerobic metabolism of both fat and carbohydrate and an increase in anaerobic glycolytic activity in the soleus muscle which parallels the change in fibre types. However, the extent of these increases cannot be explained solely on this basis and there is also an overall increase in aerobic activity in all fibres including slow oxidative ones. It is concluded that the effects of thyroid hormone on muscle phenotype and respiratory capacity involve both primary and secondary sites of action and the possible mechanisms are discussed.Abbreviations EDL extensor digitorum longus - FDP fructose-1,6-diphosphatase - FG fast twitch glycolytic - FOG fast twitch oxidative glycolytic - HAD 3-hydroxyacyl-CoA-dehydrogenase - LDH lactate dehydrogenase - PFK phosphofructokinase - SO slow twitch oxidative - T 3 triiodothyronine - T 4 thyroxine  相似文献   

8.
The binding of cholera toxin, tetanus toxin and pertussis toxin to ganglioside containing solid supported membranes has been investigated by quartz crystal microbalance measurements. The bilayers were prepared by fusion of phospholipid-vesicles on a hydrophobic monolayer of octanethiol chemisorbed on one gold electrode placed on the 5 MHz AT-cut quartz crystal. The ability of the gangliosides GM1, GM3, GD1a, GD1b, GT1b and asialo-GM1 to act as suitable receptors for the different toxins was tested by measuring the changes of quartz resonance frequencies. To obtain the binding constants of each ligand-receptor-couple Langmuir-isotherms were successfully fitted to the experimental adsorption isotherms. Cholera toxin shows a high affinity for GM1 (Ka = 1.8 ⋅ 108M–1), a lower one for asialo-GM1 (Ka = 1.0 ⋅ 107 M–1) and no affinity for GM3. The C-fragment of tetanus toxin binds to ganglioside GD1a, GD1b and GT1b containing membranes with similar affinity (Ka∼106 M–1), while no binding was observed with GM3. Pertussis toxin binds to membranes containing the ganglioside GD1a with a binding constant of Ka = 1.6 ⋅ 106 M–1, but only if large amounts (40 mol%) of GD1a are present. The maximum frequency shift caused by the protein adsorption depends strongly on the molecular structure of the receptor. This is clearly demonstrated by an observed maximum frequency decrease of 99 Hz for the adsorption of the C-fragment of tetanus toxin to GD1b. In contrast to this large frequency decrease, which was unexpectedly high with respect to Sauerbrey's equation, implying pure mass loading, a maximum shift of only 28 Hz was detected after adsorption of the C-fragment of tetanus toxin to GD1a. Received: 14 January 1997 / Accepted: 15 April 1997  相似文献   

9.
Summary Tench (Tinca tinca) were acclimated to either aerated (P O 2 17.6 KPa) or hypoxic water (P O 2 1.5 KPa) at 15° C. Fish acclimated to P O 2 17.6 KPa had a routine oxygen consumption (mls O2/Kg bodyweight/h) of 32.7 in aerated water. Upon acute exposure to P O 2 1.5 KPa oxygen consumption decreased to 10.8 and 15.6 in fish acclimated to aerated and hypoxic water, respectively.On the basis of staining for glycogen and for the activities of myofibrillar ATPase and succinic dehydrogenase, three main fibre types can be differentiated in the myotomal muscle.Fibres have been classified as slow, fast aerobic and fast glycolytic. Fast aerobic fibres can be distinguished histochemically by their alkaline-stable Ca2+-activated myofibrillar ATPase activity and their intermediate levels of staining for glycogen and succinic dehydrogenase activity.The patterns of innervation of the fibre types have been investigated by staining neuromuscular endplates and peripheral axons for acetylcholinesterase activity. Motor axons to slow fibres branch extensively giving rise to a number of diffuse endplate formations on the same and adjacent fibres. Fast glycolytic fibres also have a complex pattern of innervation with 8–20 endplates per fibre. A large proportion of the endplates belonged to separate axons.Cross-sectional areas and perimeters of fibres, the number of capillaries/fibre and the lengths of contacts between capillaries and fibres were determined from low-magnification electron micrographs.Acclimation to hypoxia resulted in a decrease in the number of capillaries per fibre for both slow (1.8 to 1.0) and fast (0.8 to 0.2) muscles. The capillary perimeter supplying 1 m2 of fibre cross-sectional area decreased by 43 % and 76 % for slow and fast fibres, respectively.  相似文献   

10.
Summary Single fast fibres and small bundles of slow fibres were isolated from the trunk muscles of an Antarctic (Notothenia neglecta) and various warm water marine fishes (Blue Crevally,Carangus melampygus; Grey Mullet,Mugil cephalus; Dolphin Fish,Coryphaena hippurus; Skipjack-tuna,Katsuwonus pelamis and Kawakawa,Euthynuus affinis). Fibres were chemically skinned with the nonionic detergent Brij 58.For warm water species, maximum Ca2+-activated tension (P 0) almost doubled between 5–20°C with little further increase up to 30°C. However, when measured at their normal body temperatures,P 0 values for fast fibres were similar for all species examined, 15.7–22.5 N · cm–2. Ca2+-regulation of contraction was disrupted at temperatures above 15°C in the Antarctic species, but was maintained at up to 30°C for warm water fish.Unloaded (maximum) contraction speeds (V max) of fibres were determined by the slacktest method. In general,V max was approximately two times higher in white than red muscles for all species studied, except Skipjack tuna. For Skipjack tuna,V max of superficial red and white fibres was similar (15.7 muscle lengths · s–1 (L 0 · s–1)) but were 6.5 times faster than theV max of internal red muscle fibres (2.4±0.2L 0 · s–1) (25°C). V max forN. neglecta fast fibres at 0–5°C (2–3L 0 · s–1) were similar to that of warm water species measured at 10–20°C. However, when measured at their normal muscle temperatures, theV max for the fast muscle fibres of the warm water species were 2–3 times higher than that forN. neglecta.In general,Q 10(15–30°C) values forV max were in the range 1.8–2.0 for all warm water species studied except Skipjack tuna.V max for the internal red muscle fibres of Skipjack tuna were much more temperature dependent (Q 10(15–30°C)=3.1) (P<0.01) than for superficial red or white muscle fibres. The proportion of slower red muscle fibres in tuna (28% for 1 kg Skipjack) is 3–10 times higher than for most teleosts and is related to the tuna's need to sustain high cruising speeds. We suggest that the 8–10°C temperature gradient that can exist in Skipjack tuna between internal red and white muscles allows both fibre types to contract at the same speed. Therefore, in tuna, both red and white muscle may contribute to power generation during high speed swimming.  相似文献   

11.
FMRFamide-related peptides of insects are particularly important because of their possible function as neurohormones and neuromodulators on a wide variety of tissues. Part of this study was an investigation of the immunofluorescent staining of motor nerves which arise in the metathoracic ganglion, examined in wholemount using an antiserum that recognizes extended -RFamide peptides (generally recognized to be of the FMRFamide family). This antiserum revealed immunochemical staining of numerous cell bodies in the metathoracic ganglion and of axons in peripheral nerve 5, a large nerve which contains both motor and sensory fibres. Axons staining positive for FMRFamide-related peptides were traced in nerve 5 as far as the femur-tibia joint, and into the first (sensory-motor) and third (motor only) ramus of nerve 5. Reverse-phase HPLC with radioimmunoassay revealed a peak of FMRFamide-related peptide activity in nerve 5 that was coincident with a peak found when thoracic ganglia were processed in the same fashion. A physiological assay was devised to test the ability of various non-native peptides to alter the characteristics of contraction of skeletal muscles of the legs. Using neurally evoked contractions of coxal depressor muscles of the metathoracic leg it was determined that several non-native peptides could potentiate muscle contractions.The results of this study suggest that muscles of the legs receive innervation by identifiable, FMRFamide-related peptide-containing neurons and that the release of peptide(s) at the muscle may be yet another method of modulating the mechanics of muscle contraction.Abbreviations D f fast depressor motor neuron - D s slow depressor motor neuron - DU M dorsal unpaired median - FaRPs FMRFamide related peptides - FEFe fast extensor of the femur - FFFe fast flexor of the femur - FITC fluorescein isothiocyanate - FPC fast promotor of the coxa - FPT fast flexor of the pretarsus - I 1–3 inhibitory motor neurons - LMS leucomyosuppressin, N5 nerve 5 - N5r1 first ramus of nerve 5 - PBS phosphate buffered saline - PLCl posterior lateral cluster - RIA radioimmunoassay - SETi slow extensor of the tibia - SFTi slow flexor of the tibia - TFA trifluoroacetic acid - VMCl ventral median cluster  相似文献   

12.
The electro-ultrafiltration (EUF) method has been used to evaluate the short-term and long-term supplying power of soils for many essential plant nutrients. The objective of this study was to compare the capacity of EUF with other extraction techniques to predict the plant availability of soil K and K fertilizer responsiveness by 10 cuts of alfalfa (Medicago sativa L.) growing over a 366-day period. Increasingly higher average concentrations of soil K were extracted by EUF at 50 V and 20°C (29 mg kg-1), EUF at 200 V and 20°C (48 mg kg-1), 0.002 M SrCl2 (55 mg kg-1), EUF at 200 V and 80°C (85 mg kg-1), 0.1 M HCl (105 mg kg-1), Mehlich 3 (119 mg kg-1), 1 M NH4OAc (120 mg kg-1) and boiling 1 M HNO3 (601 mg kg-1). The large content of vermiculitic minerals in the silt and clay fractions is responsible for EUF desorbing more K in 55 minutes than NH4OAc in 29 out of 30 soils. The total amount of K desorbed by EUF at 80°C was as effective as Mehlich 3-extractable K in predicting K uptake for the first three cuts and was best among the extracting procedures after boiling 1 M HNO3 in predicting the long-term K supply, the uptake of K from non-exchangeable sources and the relative yield of alfalfa over 10 cuts. The desorption of soil K with EUF provides a better evaluation of the K-supplying power of Quebec soils than the extractants currently used, especially on a long-term basis.Contribution no. 396.  相似文献   

13.
The mechanism of ATP hydrolysis by myosin and actomyosin was investigated for the four major classes of vertebrate muscles: fast white (posterior latissimus dorsi), slow red (anterior latissimus dorsi), cardiac and smooth (gizzard). The kinetic behavior of all classes of muscle was consistent with the scheme developed previously for rabbit fast white muscle, but quantitative differences were observed for the rate constants of some of the steps in the hydrolysis cycle. The rate of the hydrolysis step of myosin subfragment-1 was similar for the striated muscles and two to three times smaller for smooth muscle. Two isomerizations of the enzyme occurred in the pathway leading to the formation of the myosin-products intermediate. The rate of dissociation of acto S–1 by ATP was slower for slow muscles and a maximum rate was observed at low temperature. The rate of association of the S-1-products intermediate with actin was equal to the turnover rate of acto S–1 ATPase at low concentrations of actin. The rate of dissociation of ADP from an acto S–1-ADP complex was also much slower for slow muscle. It was shown by Barany (1967) that the maximum turnover rate of actomyosin ATPase (VM) is proportional to the velocity of contraction of the muscle. The only step in the mechanism that is correlated with VM is the apparent second-order rate constant for the formation of a complex of the S-1-product state with actin. The evidence is discussed in terms of a mechanism in which the release of reaction products from actomyosin is the step that is of primary importance in determining the value of VM and the velocity of contraction.  相似文献   

14.
Empirical studies of cardiovascular variables suggest that relative heart muscle mass (relative Mh) is a good indicator of the degree of adaptive specialization for prolonged locomotor activities, for both birds and mammals. Reasonable predictions for the maximum oxygen consumption of birds during flight can be obtained by assuming that avian heart muscle has the same maximum physiological and biomechanical performance as that of terrestrial mammals. Thus, data on Mh can be used to provide quantitative estimates for the maximum aerobic power input (aerobic Pi,max) available to animals during intense levels of locomotor activity. The maximum cardiac output of birds and mammals is calculated to scale with respect to Mh (g) as 213 Mh0.88+-0.04 (ml min-1), while aerobic Pi,max is estimated to scale approximately as 11 Mh0.88+-0.09 (W). In general, estimated inter-species aerobic Pi,max, based on Mh for all bird species (excluding hummingbirds), is calculated to scale with respect to body mass (Mb in kg) as 81 Mb0.82+-0.11 (W). Comparison of family means for Mh indicate that there is considerable diversity in aerobic capacity among birds and mammals, for example, among the medium to large species of birds the Tinamidae have the smallest relative Mh (0.25 per cent) while the Otidae have unusually large relative Mh (1.6 per cent). Hummingbirds have extremely large relative Mh (2.28 per cent), but exhibit significant sexual dimorphism in their scaling of Mh and flight muscle mass, so that when considering hummingbird flight performance it may be useful to control for sexual differences in morphology. The estimated scaling of aerobic Pi,max (based on Mh and Mb in g) for male and female hummingbirds is 0.51 Mb0.83 +/-0.07 and 0.44 Mb0.85+- 0.11 (W), respectively. Locomotory muscles are dynamic structures and it might be anticipated that where additional energetic ''costs'' occur seasonally (e.g. due to migratory fattening or the development of large secondary sexual characteristics) then the relevant cardiac and locomotor musculature might also be regulated seasonally. This is an important consideration, both due to the intrinsic interest of studying muscular adaptation to changes in energy demand, but also as a confounding variable in the practical use of heart rate to estimate the energetics of animals. Haemoglobin concentration (or haematocrit) may also be a confounding variable. Thus, it is concluded that data on the cardiovascular and flight muscle morphology of animals provides essential information regarding the behavioural, ecological and physiological significance of the flight performance of animals.  相似文献   

15.
This study of marsupial hearts explored the aerobic capacities of this group of mammals; recent information suggests that marsupials possess higher aerobic abilities than previously accepted. Characteristics such as heart mass, mitochondrial features and capillary parameters were examined. A comprehensive study of the heart of red kangaroos was included because of the high maximum oxygen consumption of this species. Goats were also included as a reference placental mammal. Marsupials have a heart that is generally larger than that of placentals. The allometric equation for the relationship between heart mass and body mass for marsupials was Mh=7.5Mb0.944 (Mh in g and Mb in kg); the equivalent equation for placental mammals was Mh=6.0Mb0.97. Mitochondrial volume density and inner mitochondrial surface density do not differ between the two mammal groups; although capillary parameters indicated a lower capillary volume in marsupials. Heart size appears to be the major difference between the two groups. The overall pattern seen in marsupials is similar to that of "athletic" placentals and indicates a relatively high aerobic potential.Abbreviations BMR basal metabolic rate - c(K,0) tortuosity factor - Jv(c,f) capillary length density - Mb body mass - Mh heart mass - NA(c,f) numerical capillary density - rc mean capillary radius - S(im,m) total surface area of inner mitochondrial membranes in the heart - Sv(im,m) surface density of the inner mitochondrial membranes - Sv(im,mt) surface density of inner mitochondrial membranes per unit volume of mitochondria - TEM transmission electron microscope - O2max maximum aerobic capacity - V(mt,m) total mitochondrial volume - Vv(f,m) volume fraction of muscle occupied by muscle fibres - Vv(mt,f) mitochondrial volume densityCommunicated by I.D. Hume  相似文献   

16.
Summary The histochemical activities of myofibrillar adenosine triphosphatase (ATPase), succinic dehydrogenase (SDH) and alpha glycerophosphate dehydrogenase (-GPD) were studied in intrafusal muscle fibres of rat fast and slow muscles. The ATPase reaction was carried out after the three standard acid preincubations. The cold K2-EDTA preincubated ATPase reaction product was similar to that seen following the regular or alkalipreincubated ATPase reaction, except that the intermediate bag fibres exhibited much higher activity after cold K2-EDTA preincubation. Following either acetic acid solution or cold and room temperature K2-EDTA-preincubation, followed by the ATPase reaction, chain fibres of the fast muscles vastus lateralis and extensor digitorum longus exhibited a very low amount of reaction product as compared with those of the slow soleus. Veronal acetate and K2-EDTA preincubations (and equally preincubation in acetic acid solution) resulted in acid stable ATPase activity along the entire length of the typical bag fibres but only in the polar regions of the intermediate bag fibres. On the basis of differing -GPD reaction, two sub populations of nuclear chain fibres were discovered in one spindle. It is a matter of conjecture, to what extent the histochemical differences of intrafusal fibres from fast and slow muscles reflects functional distinctions in the response to stretch of muscle spindles from fast and slow muscles.  相似文献   

17.
Summary A histochemical study was carried out on muscle fibre types in the myotomes of post-larval and adult stages of seven species of notothenioid fish. There was little interspecific variation in the distribution of muscle fibre types in post-larvae. Slow fibres (diameter range 15–60 m) which stained darkly for succinic dehydrogenase activity (SDHase) formed a superficial layer 1–2 fibres thick around the entire lateral surface of the trunk. In all species a narrow band of very small diameter fibres (diameter range 5–62 m), with only weak staining activity, occurred between the skin and slow fibre layer. These have the characteristics of tonic fibres found in other teleosts. The remainder of the myotome was composed of fast muscle fibres (diameter range 9–75 m), which stain weakly for SDHase, -glycerophosphate dehydrogenase, glycogen and lipid. Slow muscle fibres were only a minor component of the trunk muscles of adult stages of the pelagic species Champsocephalus gunnari and Pseudochaenichthys georgianus, consistent with a reliance on pectoral fin swimming during sustained activity. Of the other species examined only Psilodraco breviceps and Notothenia gibberifrons had more than a few percent of slow muscle in the trunk (20%–30% in posterior myotomes), suggesting a greater involvement of sub-carangiform swimming at cruising speeds. The ultrastructure of slow fibres from the pectoral fin adductor and myotomal muscles of a haemoglobinless (P. georgianus) and red-blooded species (P. breviceps), both active swimmers, were compared. Fibres contained loosely packed, and regularly shaped myofibrils numerous mitochondria, glycogen granules and occasional lipid droplets. Mitochondria occupied >50% of fibre volume in the haemoglobinless species P. georgianus, each myofibril was surrounded by one or more mitochondria with densely packed cristae. No significant differences, however, were found in mean diameter between fibres from red-blooded and haemoglobinless species. The activities of key enzymes of energy metabolism were determined in the slow (pectoral) and fast (myotomal) muscles of N. gibberifrons. In contrast to other demersal Antarctic fish examined, much higher glycolytic activities were found in fast muscle fibres, probably reflecting greater endurance during burst swimming.  相似文献   

18.
Summary Incubation for Ca++-activated myosin ATPase reveals three types of muscle fibres in m. parietalis of the Atlantic hagfish (Myxine glutinosa), while m. craniovelaris and m. longitudinalis linguae both contain one type of muscle fibres.The fast twitch white fibres of m. longitudinalis linguae and m. parietalis show relatively high ATPase activity, while the intermediate fibres of m. parietalis show low activity. Despite of being slow non-twitch, the superficial red fibres of m. parietalis and the fibres of m. craniovelaris show an ATPase activity even higher than that of the fast twitch muscle fibres.  相似文献   

19.
Some contractile properties of small bundles (100–200 m diameter) of muscle fibres isolated from the extensor digitorum longus muscle of rats at different times of development were compared. An increase of resting potential was observed in these muscles from-26.9 mV at 1 day of age to-72.6 mV at 3 months. Twitch tension and duration of postnatal muscles 1–7 days were diminished by reducing [Ca]o (substituted by Mg2+) or adding inorganic cations (Ni2+, Cd2+, La3+), unlike in the oldest animals (14 days–3 months postnatal) where twitch responses were unaffected. In the latter, potentiation of the twitch tension was even recorded in the presence of Ni2+ (0.5–1 mmol·l-1) and Cd2+ (0.5–2 mmol·l-1). Properties of activation and inactivation of the developed tension following elevation of [K]o to 15–200 mmol·l-1 were analysed at the same stages of postnatal development. In contrast to the tension-membrane potential curves for activation, which presented an average negative shift of-17.6 mV between 1 day postnatal and 3 months of age, a voltage dependence of inactivation similar to that encountered in adult extensor digitorum longus muscles, was already reached at 7 days of age. These results suggest an asynchronism in the maturation of the potential-dependent characteristics of the depolarization-contraction coupling mechanism. Furthermore, during the first week postnatal, in relation with poorly developed membrane systems and low [Ca]i-recycling capability, [Ca]o plays a fundamental role in maintaining contraction by replenishing the intracellular calcium pool.Abbreviations ATPase adenosine triphosphatase - [Ca]o ([K]o) extracellular calcium (potassium) concentration - DC depolarization-contraction - EC excitation-contraction - e.d.l. muscle extensor digitorum longus muscle - E m membrane potential - E r resting potential - HEPES N-2 hydroxyethylpiperazine-N-2 ethanesulphonic acid - I fast fast calcium current - sr sarcoplasmic reticulum - T-tubules transverse tubules  相似文献   

20.
A general model of the kinetics of microbial growth has been developed involving the kinetics of incorporation of substrate into biomass and the maintenance energy requirements. Results obtained from batch cultures of the yeast Saccharomyces cerevisiae growing in synthetic media at pH 5.1 and 30°C permitted all biological parameters in the model to be calculated. Values obtained for these parameters were: maximum specific glucose uptake rate (μSm), 2.08 g/g biomass/hr; apparent Michaelis constant for glucose (KS), 0.1 g/liter (5.5 × 10?4M) apparent Michaelis constant for oxygen (KL), 1.4% O2 (3.2 × 10?6 M) quantitative index of the Pasteur effect (b), 4.9 × 10?4%?1 O2 (207 M ?1). Under conditions of strongly substrate-repressed respiration the values obtained for YATP and P/O were constant over the course of the exponential phase of growth (YATP = 10.4 g biomass/mole ATP; P/O = 3 moles ATP/atom 0). Mass balances for aerobic and anaerobic cultures confirmed the results obtained form the generalized model. Results presented suggested the operation of a mechanism for regulating energy-yielding metabolism which involved an equilibrium between the systems of oxidative phosphorylation and dephosphorylation and was dependent upon the level of catbolite repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号