首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of the cardiac valves is an essential component of cardiovascular development. Consistent with the role of the bone morphogenetic protein (BMP) signaling pathway in cardiac valve formation, embryos that are deficient for the BMP regulator BMPER (BMP-binding endothelial regulator) display the cardiac valve anomaly mitral valve prolapse. However, how BMPER deficiency leads to this defect is unknown. Based on its expression pattern in the developing cardiac cushions, we hypothesized that BMPER regulates BMP2-mediated signaling, leading to fine-tuned epithelial-mesenchymal transition (EMT) and extracellular matrix deposition. In the BMPER-/- embryo, EMT is dysregulated in the atrioventricular and outflow tract cushions compared with their wild-type counterparts, as indicated by a significant increase of Sox9-positive cells during cushion formation. However, proliferation is not impaired in the developing BMPER-/- valves. In vitro data show that BMPER directly binds BMP2. In cultured endothelial cells, BMPER blocks BMP2-induced Smad activation in a dose-dependent manner. In addition, BMP2 increases the Sox9 protein level, and this increase is inhibited by co-treatment with BMPER. Consistently, in the BMPER-/- embryos, semi-quantitative analysis of Smad activation shows that the canonical BMP pathway is significantly more active in the atrioventricular cushions during EMT. These results indicate that BMPER negatively regulates BMP-induced Smad and Sox9 activity during valve development. Together, these results identify BMPER as a regulator of BMP2-induced cardiac valve development and will contribute to our understanding of valvular defects.  相似文献   

2.
The mature heart valves and septa are derived from the cardiac cushions which initially form as local outgrowths of mesenchymal cells within the outflow tract and atrioventricular regions. Endocardial cells respond to signals from the overlying myocardium and undergo an epithelial-to-mesenchymal transformation to invade the intervening extracellular matrix. The molecules that can induce and maintain these cell populations are not known, but many candidates, including several TGFbetas and BMPs, have been proposed based on their expression patterns and activities in other systems. In the present study, we describe the expression of Bmp6 and Bmp7 in overlapping and adjacent sites, including the cardiac cushions during mouse embryonic development. Previous analyses demonstrate that neither of these BMPs is required during cardiogenesis, but analysis of Bmp6;Bmp7 double mutants uncovers a marked delay in the formation of the outflow tract endocardial cushions. A proportion of Bmp6;Bmp7 mutants also display defects in valve morphogenesis and chamber septation, and the embryos die between 10.5 and 15.5 dpc due to cardiac insufficiency. These data provide the first genetic evidence that BMPs are involved in the formation of the cardiac cushions.  相似文献   

3.
4.
Eph proteins are receptor tyrosine kinases that control changes in cell shape and migration during development. We now describe a critical role for EphA3 receptor signaling in heart development as revealed by the phenotype of EphA3 null mice. During heart development mesenchymal outgrowths, the atrioventricular endocardial cushions, form in the atrioventricular canal. This morphogenetic event requires endocardial cushion cells to undergo an epithelial to mesenchymal transformation (EMT), and results in the formation of the atrioventricular valves and membranous portions of the atrial and ventricular septa. We show that EphA3 knockouts have significant defects in the development of their atrial septa and atrioventricular endocardial cushions, and that these cardiac abnormalities lead to the death of approximately 75% of homozygous EphA3(-/-) mutants. We demonstrate that EphA3 and its ligand, ephrin-A1, are expressed in adjacent cells in the developing endocardial cushions. We further demonstrate that EphA3(-/-) atrioventricular endocardial cushions are hypoplastic compared to wildtype and that EphA3(-/-) endocardial cushion explants give rise to fewer migrating mesenchymal cells than wildtype explants. Thus our results indicate that EphA3 plays a crucial role in the development and morphogenesis of the cells that give rise to the atrioventricular valves and septa.  相似文献   

5.
Abstract The epicardium is embryologically formed by outgrowth of proepicardial cells over the naked heart tube. Epicardium-derived cells (EPDCs) migrate into the myocardium, contributing to myocardial architecture, valve development, and the coronary vasculature. Defective EPDC formation causes valve malformations, myocardial thinning, and coronary defects. In the atrioventricular (AV) valves and the fibrous heart skeleton isolating atrial from ventricular myocardium, EPDCs colocalize with periostin, a matrix molecule involved in remodeling. We investigated whether proepicardial outgrowth inhibition affected periostin expression and how this related to development of the AV valves and fibrous heart skeleton.
Periostin expression by epicardium and EPDCs was confirmed in vitro in primary cultures of human and quail EPDCs. Disturbing EPDC formation in quail embryos reduced periostin expression in the endocardial cushions and AV junction. Disturbed fibrous tissue development resulted in AV myocardial connections reflected by preexcitation electrocardiographic patterns.
We conclude that EPDCs are local producers of periostin. Disturbance of EPDC formation results in decreased cardiac periostin levels and hampers the development of fibrous tissue in AV junction and the developing AV valves. The resulting cardiac anomalies might link to Wolff–Parkinson White syndrome with persistent AV myocardial connections.  相似文献   

6.
7.
The anatomic relationship of the aortic and mitral valves is a useful landmark in assessing congenital heart malformations. The atrioventricular and semilunar valve regions originate in widely separated parts of the early embryonic heart tube, and the process by which the normal fibrous continuity between the aortic and mitral valves is acquired has not been clearly defined. The development of the aortic and mitral valve relationship was studied in normal human embryos in the Carnegie Embryological Collection, and specimens of Carnegie stages 13, 15, 17, 19, and 23, prepared as serial histologic sections cut in the sagittal plane, were selected for reconstruction. In stage 13, the atrioventricular valve area is separated from the semilunar valve area by the large bend between the atrioventricular and outflow-tract components of the single lumen heart tube created by the left interventricular sulcus. In stages 15 and 17, the aortic valve rotates into a position near the atrioventricular valves with development of four chambers and a double circulation. In stage 19, there is fusion of aortic and mitral endocardial cushion material along the endocardial surface of the interventricular flange, and this relationship is maintained in subsequent stages. Determination of three-dimensional Cartesian coordinates of the midpoints of valve positions shows that, while there is growth of intervalvular distances up to stage 17, the aortic to mitral distance is essentially unchanged thereafter. During the period studied, the left ventricle increases in length over threefold. The relative lack of growth in the saddle-shaped fold between the atrioventricular and outflow tract components of the heart, contrasting with the rapid growth of the outwardly convex components of most of the atrial and ventricular walls, may be attributed to the different mechanical properties of the two configurations. It is postulated that the pathogenesis of congenital heart malformations, which characteristically have failure of development of aortic and mitral valve continuity, may involve abnormalities of rotation of the aortic region or malpositioning of the fold in the heart tube.  相似文献   

8.
Developmental abnormalities in endocardial cushions frequently contribute to congenital heart malformations including septal and valvular defects. While compelling evidence has been presented to demonstrate that members of the TGF-beta superfamily are capable of inducing endothelial-to-mesenchymal transdifferentiation in the atrioventricular canal, and thus play a key role in formation of endocardial cushions, the detailed signaling mechanisms of this important developmental process, especially in vivo, are still poorly known. Several type I receptors (ALKs) for members of the TGF-beta superfamily are expressed in the myocardium and endocardium of the developing heart, including the atrioventricular canal. However, analysis of their functional role during mammalian development has been significantly complicated by the fact that deletion of the type I receptors in mouse embryos often leads to early embryonal lethality. Here, we used the Cre/loxP system for endothelial-specific deletion of the type I receptor Alk2 in mouse embryos. The endothelial-specific Alk2 mutant mice display defects in atrioventricular septa and valves, which result from a failure of endocardial cells to appropriately transdifferentiate into the mesenchyme in the AV canal. Endocardial cells deficient in Alk2 demonstrate decreased expression of Msx1 and Snail, and reduced phosphorylation of BMP and TGF-beta Smads. Moreover, we show that endocardial cells lacking Alk2 fail to delaminate from AV canal explants. Collectively, these results indicate that the BMP type I receptor ALK2 in endothelial cells plays a critical non-redundant role in early phases of endocardial cushion formation during cardiac morphogenesis.  相似文献   

9.
10.
The importance of the epicardium for myocardial and valvuloseptal development has been well established; perturbation of epicardial development results in cardiac abnormalities, including thinning of the ventricular myocardial wall and malformations of the atrioventricular valvuloseptal complex. To determine the spatiotemporal contribution of epicardially derived cells to the developing fibroblast population in the heart, we have used a mWt1/IRES/GFP-Cre mouse to trace the fate of EPDCs from embryonic day (ED)10 until birth. EPDCs begin to populate the compact ventricular myocardium around ED12. The migration of epicardially derived fibroblasts toward the interface between compact and trabecular myocardium is completed around ED14. Remarkably, epicardially derived fibroblasts do not migrate into the trabecular myocardium until after ED17. Migration of EPDCs into the atrioventricular cushion mesenchyme commences around ED12. As development progresses, the number of EPDCs increases significantly, specifically in the leaflets which derive from the lateral atrioventricular cushions. In these developing leaflets the epicardially derived fibroblasts eventually largely replace the endocardially derived cells. Importantly, the contribution of EPDCs to the leaflets derived from the major AV cushions is very limited. The differential contribution of EPDCs to the various leaflets of the atrioventricular valves provides a new paradigm in valve development and could lead to new insights into the pathogenesis of abnormalities that preferentially affect individual components of this region of the heart. The notion that there is a significant difference in the contribution of epicardially and endocardially derived cells to the individual leaflets of the atrioventricular valves has also important pragmatic consequences for the use of endocardial and epicardial cre-mouse models in studies of heart development.  相似文献   

11.
Normal heart function is critically dependent on the timing and coordination provided by a complex network of specialized cells: the cardiac conduction system. We have employed functional assays in zebrafish to explore early steps in the patterning of the conduction system that previously have been inaccessible. We demonstrate that a ring of atrioventricular conduction tissue develops at 40 hours post-fertilization in the zebrafish heart. Analysis of the mutant cloche reveals a requirement for endocardial signals in the formation of this tissue. The differentiation of these specialized cells, unlike that of adjacent endocardial cushions and valves, is not dependent on blood flow or cardiac contraction. Finally, both neuregulin and notch1b are necessary for the development of atrioventricular conduction tissue. These results are the first demonstration of the endocardial signals required for patterning central ;slow' conduction tissue, and they reveal the operation of distinct local endocardial-myocardial interactions within the developing heart tube.  相似文献   

12.
Inactivation of the left-right asymmetry gene Pitx2 has been shown, in mice, to result in right isomerism with associated defects that are similar to that found in humans. We show that the Pitx2c isoform is expressed asymmetrically in a presumptive secondary heart field within the branchial arch and splanchnic mesoderm that contributes to the aortic sac and conotruncal myocardium. Pitx2c was expressed in left aortic sac mesothelium and in left splanchnic and branchial arch mesoderm near the junction of the aortic sac and branchial arch arteries. Mice with an isoform-specific deletion of Pitx2c had defects in asymmetric remodeling of the aortic arch vessels. Fatemapping studies using a Pitx2 cre recombinase knock-in allele showed that daughters of Pitx2-expressing cells populated the right and left ventricles, atrioventricular cushions and valves and pulmonary veins. In Pitx2 mutant embryos, descendents of Pitx2-expressing cells failed to contribute to the atrioventricular cushions and valves and the pulmonary vein, resulting in abnormal morphogenesis of these structures. Our data provide functional evidence that the presumptive secondary heart field, derived from branchial arch and splanchnic mesoderm, patterns the forming outflow tract and reveal a role for Pitx2c in aortic arch remodeling. Moreover, our findings suggest that a major function of the Pitx2-mediated left right asymmetry pathway is to pattern the aortic arches, outflow tract and atrioventricular valves and cushions.  相似文献   

13.
Normal cardiovascular development is exquisitely dependent on the correct dosage of the angiogenic growth factor and vascular morphogen vascular endothelial growth factor (VEGF). However, cardiac expression of VEGF is also robustly augmented during hypoxic insults, potentially mediating the well-established teratogenic effects of hypoxia on heart development. We report that during normal heart morphogenesis VEGF is specifically upregulated in the atrioventricular (AV) field of the heart tube soon after the onset of endocardial cushion formation (i.e. the endocardium-derived structures that build the heart septa and valves). To model hypoxia-dependent induction of VEGF in vivo, we conditionally induced VEGF expression in the myocardium using a tetracycline-regulated transgenic system. Premature induction of myocardial VEGF in E9.5 embryos to levels comparable with those induced by hypoxia prevented formation of endocardial cushions. When added to explanted embryonic AV tissue, VEGF fully inhibited endocardial-to-mesenchymal transformation. Transformation was also abrogated in AV explants subjected to experimental hypoxia but fully restored in the presence of an inhibitory soluble VEGF receptor 1 chimeric protein. Together, these results suggest a novel developmental role for VEGF as a negative regulator of endocardial-to-mesenchymal transformation that underlies the formation of endocardial cushions. Moreover, ischemia-induced VEGF may be the molecular link between hypoxia and congenital defects in heart septation.  相似文献   

14.
The expression of type VIII collagen is restricted, in adult mammals, to specialized extracellular matrices and to a select subset of blood vessels. We have examined the distribution of type VIII collagen in sequential stages of mouse and chicken embryos and found a temporal and spatially restricted pattern of expression during cardiogenesis. Type VIII collagen was first detected by immunocytochemistry on Day 11 in the developing mouse embryo and at stage 19 in the chicken embryo. The distribution of this protein was rapidly modulated during cardiac morphogenesis. Initially (Day 11 in the mouse embryo), type VIII collagen was associated with cardiac myoblasts. From Days 15 to 18, the immunoreactive component was progressively diminished in the myocardium; however, this collagen was observed in the subendocardial layer of the atrioventricular canal and later in the cardiac jelly (or the myocardial basement membrane, an area associated with the formation of cardiac valves). On Day 17, type VIII collagen was also detected in the subendothelium (intima) and tunica media of large vessels. Neonatal and adult hearts contained low to undetectable levels of type VIII collagen. The presence of type VIII collagen was confirmed by immunoblot analysis of heart extracts at different stages of development. A major 185-kDa component, as well as polypeptides of 68 and 15 kDa, reacted with anti-type VIII collagen IgG. Exposure of heart extracts to hyaluronidase or reducing agent eliminated immunoreactivity of the 185-kDa component but not that of the 68- and 15-kDa polypeptides. Type VIII collagen therefore appears to be associated with a hyaluronidase-sensitive component of the extracellular matrix during a temporally restricted stage of embryonic cardiogenesis. The contribution of this collagen to cardiac morphogenesis might reside, in part, in its ability to influence the differentiation of the myocardium and formation of the cardiac valves.  相似文献   

15.
While much has been learned about how endothelial cells transform to mesenchyme during cardiac cushion formation, there remain fundamental questions about the developmental fate of cushions. In the present work, we focus on the growth and development of cushion mesenchyme. We hypothesize that proliferative expansion and distal elongation of cushion mesenchyme mediated by growth factors are the basis of early valve leaflet formation. As a first step to test this hypothesis, we have localized fibroblast growth factor (FGF)-4 protein in cushion mesenchymal cells at the onset of prevalve leaflet formation in chick embryos (Hamburger and Hamilton stage 20-25). Ligand distribution was correlated with FGF receptor (FGFR) expression. In situ hybridization data indicated that FGFR3 mRNA was confined to the endocardial rim of the atrioventricular (AV) cushion pads, whereas FGFR2 was expressed exclusively in cushion mesenchymal cells. FGFR1 expression was detected in both endocardium and cushion mesenchyme as well as in myocardium. To determine whether the FGF pathways play regulatory roles in cushion mesenchymal cell proliferation and elongation into prevalvular structure, FGF-4 protein was added to the cushion mesenchymal cells explanted from stage 24-25 chick embryos. A significant increase in proliferative ability was strongly suggested in FGF-4-treated mesenchymal cells as judged by the incorporation of 5'-bromodeoxyuridine (BrdU). To determine whether cushion cells responded similarly in vivo, a replication-defective retrovirus encoding FGF-4 with the reporter, bacterial beta-galactosidase was microinjected into stage 18 chick cardiac cushion mesenchyme along the inner curvature where AV and outflow cushions converge. As compared with vector controls, overexpression of FGF-4 clearly induced expansion of cushion mesenchyme toward the lumen. To further test the proliferative effect of FGF-4 in cardiac cushion expansion in vivo (ovo), FGF-4 protein was microinjected into stage 18 chick inner curvature. An assay for BrdU incorporation indicated a significant increase in proliferative ability in FGF-4 microinjected cardiac cushion mesenchyme as compared with BSA-microinjected controls. Together, these results suggest a role of FGF-4 for cardiac valve leaflet formation through proliferative expansion of cushion mesenchyme.  相似文献   

16.
17.
Heart valve malformations are one of the most common types of birth defects, illustrating the complex nature of valve development. Vascular endothelial growth factor (VEGF) signaling is one pathway implicated in valve formation, however its specific spatial and temporal roles remain poorly defined. To decipher these contributions, we use two inducible dominant negative approaches in mice to disrupt VEGF signaling at different stages of embryogenesis. At an early step in valve development, VEGF signals are required for the full transformation of endocardial cells to mesenchymal cells (EMT) at the outflow tract (OFT) but not atrioventricular canal (AVC) endocardial cushions. This role likely involves signaling mediated by VEGF receptor 1 (VEGFR1), which is highly expressed in early cushion endocardium before becoming downregulated after EMT. In contrast, VEGFR2 does not exhibit robust cushion endocardium expression until after EMT is complete. At this point, VEGF signaling acts through VEGFR2 to direct the morphogenesis of the AVC cushions into mature, elongated valve leaflets. This latter role of VEGF requires the VEGF-modulating microRNA, miR-126. Thus, VEGF roles in the developing valves are dynamic, transitioning from a differentiation role directed by VEGFR1 in the OFT to a morphogenetic role through VEGFR2 primarily in the AVC-derived valves.  相似文献   

18.
Apart from the well-studied melanocytes of the skin, eye and inner ear, another population has recently been described in the heart. In this study, we tracked cardiac melanoblasts using in situ hybridization with a dopachrome tautomerase (Dct) probe and Dct-LacZ transgenic mice. Large numbers of melanoblasts were found in the atrioventricular (AV) endocardial cushions at embryonic day (E) 14.5 and persisted in the AV valves into adulthood. The earliest time Dct-LacZ-positive cells were observed in the AV endocardial cushions was E12.5. Prior to that, between E10.5 and E11.5, small numbers of melanoblasts traveled between the post-otic area and third somite along the anterior and common cardinal veins and branchial arch arteries with other neural crest cells expressing CRABPI. Cardiac melanocytes were not found in the spotting mutants Ednrb s-l/s-l and Kit w-v/w-v, while large numbers were observed in transgenic mice that overexpress endothelin 3. These results indicate that cardiac melanocytes depend on the same signaling molecules known to be required for proper skin melanocyte development and may originate from the same precursor population. Cardiac melanocytes were not found in zebrafish or frog but were present in quail suggesting an association between cardiac melanocytes and four-chambered hearts.  相似文献   

19.
L A Davis  T W Sadler 《Teratology》1981,24(2):139-148
Retinoic acid (RA) (78mg/kg) administered to ICR mice on days 9.0,9.5 and 10.0 of pregnancy (plug day = day 1), resulted in cardiac malformations in 37.6% of the surviving fetuses, including transposition of the great arteries, ventricular septal defects, and double outlet right ventricle. Histological examination of the hearts of embryos observed 24 hours after in vivo or in vitro exposure to RA on day 9 revealed abnormalities in endocardial cushion tissue. The volume of the atrioventricular endocardial was reduced in treated embryos as was the ratio of the size of the cushions to the size of the heart. The endothelial layer of the atrioventricular endocardial cushions appeared to be unaffected by the retinoic acid, however, the mesenchymal cushion cells were significantly reduced in number when compared with controls. Labeling with [3H]-thymidine indicated that the mitotic activity of the mesenchymal cell population was significantly decreased while that of the endothelial cells was comparable to control levels. The extracellular matrix or cardiac jelly of the endocardial cushions also appeared to be affected by RA exposure, as shown by studies utilizing colloidal iron to stain GAGs, which revealed a decrease in the amount of stainable material in treated cushions. Two possible cause for the reduced thymidine index of the cushion mesenchyme are discussed, namely, a direct effect of RA on the mesenchymal cells or an indirect effect via the altered extracellular matrix of the cushion tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号