首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Six species of parasites were recovered 4 mo after walleye fry were stocked in Heming Lake, Manitoba. The species of parasites acquired most rapidly were those that were non-host-specific and common to the indigenous populations of both walleye and yellow perch (Perca flavescens). Parasite species overlap (Jaccard's indices) was greatest within age groups of walleye and yellow perch, but was also high between older walleye and yellow perch. The higher numbers of parasites recruited by stocked walleye, particularly ones known to induce pathology, raises questions on the success of walleye introductions to aquatic systems with a diverse indigenous parasite fauna and a fish population with a large proportion of yellow perch.  相似文献   

2.
The prevalence and intensity of the hematophagous pennellid copepod Haemobaphes diceraus were monitored over a 10-mo period in shiner perch Cymatogaster aggregata at Pipers Lagoon, Nanaimo, British Columbia. The prevalence and mean intensity of metamorphosed adult female H. diceraus (n = 421) were 10.0% and 1.2 (+/-0.5 SD), respectively. The majority (97.9%) of infected fish had single infections, reflecting the possibility of intensity-dependent parasite-induced mortality, rejection of additional parasites, or both. Transforming females were detected throughout the year; however, there was no detectable seasonal pattern of colonization. Neither copepodids nor adult males of H. diceraus were observed on the gills of shiner perch, and this was consistent with the hypothesis that an intermediate host harbors these stages. Males of Haemobaphes sp. infected the gills of bay pipefish Syngnathus griseolineatus with a prevalence and mean intensity of 56.0% and 6.8 +/- 3.7, respectively. Transmission of H. diceraus to shiner perch probably occurs in inshore protected areas, where shiner perch ecologically overlap with the probable intermediate host of H. diceraus, the bay pipefish.  相似文献   

3.
In both yellow perch ( Perca flavescens ) and walleye ( Stizostedion vitreum ), females grow significantly faster and reach a larger ultimate size than males. In addition, reproductive development in both of these species can have a significant negative impact on somatic growth and fillet yield. Accordingly, methods for producing monosex female populations and for inducing sterility, have important potential applications for both commercial fish culture and fisheries management. Of the several available methods for producing monosex female populations in fishes (such as yellow perch and walleye) in which females are homogametic, the preferred method (described herein) may be to treat juveniles with androgens to induce phenotypic sex inversion of genetic females, and to subsequently use sperm from these females to fertilize normal eggs. Initial efforts at inducing sterility focused on the direct use of either heat or hydrostatic pressure shocks to produce triploid yellow perch and walleye. The gonadal development of triploid yellow perch and walleye of both sexes is retarded compared to that of diploids, and triploid yellow perch can have higher fillet yields than diploids. The direct use of heat and pressure shocks to induce triploidy in yellow perch, however, has negative effects on growth that are independent of ploidy status. One way to circumvent this problem is to produce triploids by crossing fertile tetraploids with diploids. To date, methods of producing viable tetraploids (beyond the larval stage) have been developed for yellow perch but not for walleye.  相似文献   

4.
On the capacity of macroparasites to control insect populations   总被引:1,自引:0,他引:1  
A graphical model of the population dynamics of macroparasites and their hosts is developed. Three principal means by which the parasites can be regulated are considered: reduction in host density as a result of parasite-induced host mortality, reduction in host density as a result of parasite-induced host sterility, and competition among parasites within multiply-infected hosts. The means by which parasites are regulated has a major effect on the degree to which they can depress host population densities. In particular, a parasite that sterilizes its host is expected to reduce host density more than one that causes an equivalent decline in host fitness through increased mortality. A special case of the model is developed for herbivorous insects that, in the absence of parasites, are limited by larval food resources. Parasites that are regulated via parasite-induced host sterility will control the insect populations below the level set by larval resources if the threshold host density for the parasites (N(T)) is less than the ratio of carrying capacity to net reproductive rate of the insects (K/R). Data are presented showing that all three means of parasite regulation, but especially parasite-induced host sterility, can operate in Howardula aoronymphium, a nematode parasite of mycophagous Drosophila flies. Data from a field cage experiment show that, if these nematodes are regulated primarily via reductions in host density due to this sterility, the parameters N(T), K, and R are such that Howardula is likely to play an important role in controlling Drosophila populations. However, this conclusion must be tempered by the fact that these nematodes also cause increased host mortality and experience within-host competition, making the conditions for parasite control of the flies more stringent.  相似文献   

5.
Failure to induce over-compensation of growth in maturing yellow perch   总被引:2,自引:0,他引:2  
Unlike juvenile F1 male bluegill Lepomis macrochrus × female green sunfish L. cyanellus , maximized episodes of compensatory growth (CG) in 2 year yellow perch Perca flavescens did not surpass control masses because internal regulation caused abrupt appetite reduction upon catch-up. Together, the hybrid sunfish study and present work indicate that CG-maximizing feeding schedules and absence of an internal growth limiting mechanism are both required to produce substantial growth overcompensation (GOC). The less vigorous and less resilient CG responses of the yellow perch relative to those of the similarly fed hybrid sunfish appear indicative of the lack of GOC capacity in the former. This contrast, and results of previous studies are interpreted to suggest that GOC capacity may be limited to early life stages of fishes which have a substantial reproductive potential but are at high risk of mortality due to their small size. The possibility that GOC capacity is time-of-year-dependent and species-specific is considered also. Food deprivation periods that produced the strongest CG responses differed for male (2 days) and female (12 days) yellow perch. Among controls fed without restriction, growth rate and growth efficiency of female yellow perch exceeded those of males two-fold, however, males showed a greater capacity to catch-up to same-sex controls when undergoing CG. A feeding schedule using maintenance feeding v. food deprivation to elicit CG yielded the most rapid catch-up to control masses in the yellow perch. Such feeding schedules may produce even greater GOC than was achieved previously in hybrid sunfish, where feeding schedules involving food deprivation were employed.  相似文献   

6.
Patterns of accumulation of Triaenophorus crassus in its second intermediate host whitefish Coregonus lavaretus s.l. were studied between 1991 and 1996 from two host populations in two separate areas of Lake Saimaa, Finland. Whitefish were infected commonly with several T. crassus plerocercoids and the parasites were aggregated into the oldest hosts. In one host population the annual parasite accumulation was 0·9 parasites in all host age groups between 3 and 8 years. In the other host population the annual accumulation was 1·6 parasites in 3–5-year-old fish, but increased up to 3 to 4 parasites per year in fish over 5 years old. The increase did not coincide with the period of maturation or any increase in whitefish growth, both of which could alter the food intake of the fish. The sharp increase in the annual accumulation suggests a threshold intensity above which the probability of acquiring further parasites increases. In spite of a heavy aggregation of parasites there was no evidence of parasite-induced host mortality. The annual increase in mean abundance was not correlated with the mean annual weight increase in 2–4-year-old fish within cohorts. However, evidence of a negative effect of parasites on whitefish growth was revealed by back-calculation of lengths of uninfected and infected whitefish and correlations between length or weight of fish and intensity of infection with fish age. Both analyses suggested that larger young fish harboured more parasites than the smaller ones while in older fish the reverse was true, a pattern that has not been shown earlier for parasitized fish.  相似文献   

7.
Bluegill (Lepomis macrochirus) and yellow perch (Perca flavescens) populations are often sympatric in the Great Plains region of the U.S.A. and portions of Canada; however, very little attention has been given to potential interactions between these species for available resources, especially during the early life stages. Relationships between age-0 bluegill and yellow perch growth and relative abundance were explored across multiple lakes and years within the Nebraska Sandhill region, USA. In addition, four habitat patch types (open water, Phragmites spp., Typha spp., Scirpus spp.) were sampled for age-0 bluegill and yellow perch, and food habits were examined for each species during August, September, and October of 2009 in one of these lakes. Age-0 yellow perch growth was negatively related to age-0 bluegill relative abundance across a spatiotemporal scale. Age-0 bluegill and yellow perch exhibited similar habitat use (moderate–high overlap), but generally consumed different important and dominant prey taxa (bluegill consumed both macroinvertebrates—56?% and zooplankton—44?%, while yellow perch consumed more zooplankton—66?%), which resulted in low overall diet overlap between species. Previous research indicates that age-0 yellow perch diet ontogeny often results in feeding predominately on macroinvertebrates and positively selecting them (and avoiding zooplankton prey) at sizes observed in our study. Therefore, yellow perch growth rates may be compromised by the presence of bluegill because of the need to consume less energetically profitable prey items such as zooplankton.  相似文献   

8.
Synopsis Effects of environmental factors on the distribution and abundance of yellow perch and central mudminnows in northern Wisconsin were examined by holding populations of these fishes within single-species enclosures in a series of three small forest lakes having a species-richness gradient of one to four species. These enclosures allowed each species to experience environmental conditions within each lake without directly interacting with each other. In the four-species lake, two other sets of enclosures addressed the effects of intra- and interspecific competition. Changes in total biomass of enclosure stocks (from growth and mortality) indicated that in the absence of other species, perch did best in the lake containing the richest fish assemblage, intermediate in the two-species lake, and worst in the mudminnow-only lake. Mudminnow stocks similarly performed significantly better in the four-species lake than the mudminnow-only lake. These results suggest that the lakes' environmental conditions contribute to the patterns of presence and abundance of perch, but that interspecific interactions override a similar contribution for the mudminnow, which is regarded as a fugitive species. Perch performances were also sensitive to fish densities within enclosures, declining significantly when stocks were doubled, either by adding more perch or equal numbers of mudminnows.  相似文献   

9.
Synopsis During 1982 and 1983, seining, fyke netting, and SCUBA observation were used to determine the depth distribution, abundance, and mortality of small littoral-zone fishes (bluntnose minnows, shiners [primarily mimic shiners], yellow perch, logperch, johnny darters, Iowa darters, and mottled sculpins) in Sparkling Lake, a small moderately-productive lake in northern Wisconsin. During the summer cyprinids, darters, and mottled sculpins were most abundant in areas shallower than 1 m, while yellow perch were most abundant at depths of 2 to 4 m. Between August and October cyprinids and yellow perch moved to water 1 to 2 m deeper, while the depth distributions of darters and mottled sculpins generally remained unchanged. Large within- and between-year variations in abundances and mortality rates were evident for all species. In 1982, most of the mortality of cyprinids and darters occurred during a short period in late spring and early summer, with relatively little afterwards. In 1983, this pattern was reversed for cyprinids and Iowa darters, but not logperch and johnny darters. Between-year differences in abundance were greatest for young-of-the-year yellow perch; they were 400 times more numerous in 1983 than in 1982. Darters had their lowest mortality rates and highest reproductive success in 1983, while the opposite was true for cyprinids. This lack of synchrony between darters and cyprinids suggests that these two taxa responded differently to changes in environmental conditions in Sparkling Lake. Predation may have accounted for much of the variability in darter population parameters, but appeared to be a less important source of variation for cyprinid population parameters.  相似文献   

10.
Sanguinicola occidentalis (Trematoda: Sanguinicolidae) infected 58 (48%) of 120 yellow perch collected in 1997 and 40 (50%) of 80 yellow perch collected in 1998 from Silver Creek in lower Michigan. The mean intensity and mean abundance of this blood fluke were higher in 1998 than in 1997. The fluke was found in the bulbous arteriosus of the perch heart, free in the petri dishes when the gill filaments were teased apart, and in the body cavity washings, and 1 individual was associated with an eye. Of the 269 S. occidentalis examined from perch, none had eggs. Most perch examined and infected were only 1+ yr in age. Spearman's correlation coefficients between S. occidentalis intensity and host length in 1997 and 1998 were not significant. An additional 25 yellow perch (0+ yr in age) collected in 1998 were not infected. Thirty-seven (33%) of 113 snails (Campeloma decisum) examined in July and August 1999 from Silver Creek were infected with S. occidentalis.  相似文献   

11.
1. For many fish species, survival during early life stages is linked to the size and energetic condition of females prior to reproduction. For example, females in good energetic condition are often more fecund and produce larger eggs and offspring than those in poor condition. 2. We measured the characteristics of female yellow perch (Perca flavescens) that may influence annual population fluctuations. From 2005 to 2007, we measured spatial variation in female reproductive traits, such as age, length, mass and energy density (J g?1) of somatic tissues and ovaries among four spawning aggregations of yellow perch in western and central Lake Erie. 3. Maternal traits, such as somatic energy density and spawner age distribution, differed between the western and central basin, whereas reproductive traits, such as fecundity and ovarian energy density, differed across years. 4. To understand the implications of observed differences in demographic rates (growth and mortality rates) between basins, we developed a deterministic model to simulate the total egg production in the western and central basins under different scenarios of fishing mortality. 5. High growth rates and low mortality rates combined to produce higher modelled estimates of total egg production in the central than in the western basin, and a larger proportion of eggs were produced by old age classes in the central basin than in the western basin. 6. Our results demonstrate that changing harvest levels for populations with different demographic rates can influence total reproductive output through complex interactions between age‐specific mortality, growth and size‐specific fecundity, which has implications for the population dynamics of yellow perch and related species across a broad geographic range.  相似文献   

12.
General response patterns of fish populations tostress, originally proposed by Colby for fisheriesrehabilitation and later adapted by Munkittrick forcontaminants, were evaluated using an individual-basedsimulation model. General response patterns relatechanges in population-level variables to the type ofstress. The model follows the daily growth,mortality, and spawning of individual yellow perch andwalleye through their lifetime, and was corroboratedusing Oneida Lake data. Two versions of the model wereused: population (yellow perch only) and community(dynamic predation on yellow perch by walleye). Eightstresses were imposed on the population and communityversions of the model and 100-year simulations wereperformed. Response patterns were defined by changesin predicted yellow perch mean population abundance,mean age of adults, and mean adult growth (representedby mean length at age-7). Proposed response patternswere similar to those predicted using the populationversion of the model. Simulations using the communityversion of the model distorted the response patterns,either causing amplification, dampening, or reversalof many of the patterns. Predicted response patternsbecame unique when additional variables were included.Our model results suggest that caution is appropriatein interpreting general response patterns based onmean age, or when the population of interest plays amajor role in a relatively simple food web. The responsepattern approach may be better at identifying the lifestage impacted rather than the mechanism of the stress.  相似文献   

13.
Intermediate host exploitation by parasites is presumably constrained by the need to maintain host viability until transmission occurs. The relationship between parasitism and host survival, though, likely varies as the energetic requirements of parasites change during ontogeny. An experimental infection of an acanthocephalan (Acanthocephalus lucii) in its isopod intermediate host (Asellus aquaticus) was conducted to investigate host survival and growth throughout the course of parasite development. Individual isopods were infected by exposure to fish feces containing parasite eggs. Isopods exposed to A. lucii had reduced survival, but only early in the infection. Mean infection intensity was high relative to natural levels, but host mortality was not intensity dependent. Similarly, a group of naturally infected isopods harboring multiple cystacanths did not have lower survival than singly infected isopods. Isopods that were not exposed to the parasite exhibited sexual differences in survival and molting, but these patterns were reversed or absent in exposed isopods, possibly as a consequence of castration. Further, exposed isopods seemed to have accelerated molting relative to unexposed controls. Infection had no apparent effect on isopod growth. The effects of A. lucii on isopod survival and growth undermine common assumptions concerning parasite-induced host mortality and the resource constraints experienced by developing parasites.  相似文献   

14.
Larval golden perch, Macquaria ambigua , and silver perch, Bidyanus bidyanus , were exposed to light gradients in wavebands centred on 400, 496, 601 and 695 nm at nominal quantum irradiance values of 0–1, 1–0 and 10 μmol m−2 s−l. Silver perch larvae displayed stronger phototactic behaviour than golden perch, and both species were most responsive to light in the 601 nm waveband. The intensity of phototactic responses in both species was greater at higher irradiance levels. Enhanced responsiveness to longer wavelengths reflects possible adaptations to life in turbid habitats where the underwater light field is dominated by yellow/orange wavebands.
At night, traps fitted with 12 h yellow lightsticks attracted more golden perch larvae than traps with blue, green, orange, red or no lightstick. The efficacy of yellow lightsticks may be due to yellow/orange wavebands not being attenuated under water as rapidly as blue or red wavebands. Yellow lightsticks also emit a greater intensity of light over a longer time than other colours tested, which may have increased the effectiveness of yellow traps. Light traps were ineffective during the day.  相似文献   

15.
1. When available, Daphnia spp. are often preferred by age‐0 yellow perch and bluegill sunfish because of energetic profitability. We hypothesised that predation by age‐0 yellow perch could lead to a midsummer decline (MSD) of Daphnia spp. and that priority effects may favour yellow perch because they hatch before bluegill, allowing them to capitalise on Daphnia spp. prior to bluegill emergence. 2. Data were collected from 2004 to 2010 in Pelican Lake, Nebraska, U.S.A. The lake experienced a prolonged MSD in all but 1 year (2005), generally occurring within the first 2 weeks of June except in 2008 and 2010 when it occurred at the end of June. MSD timing is not solely related to seasonal patterns of age‐0 yellow perch consumption. Nevertheless, when Daphnia spp. biomass was low during 2004 and 2006–2010 (<4 mg wet weight L?1), predation by age‐0 yellow perch seems to have suppressed Daphnia spp. biomass (i.e. <1.0 mg wet weight L?1). The exception was 2005 when age‐0 yellow perch were absent. 3. Growth of age‐0 bluegill was significantly faster in 2005, when Daphnia spp. were available in greater densities (>4 mg wet weight L?1) compared with the other years (<0.2 mg wet weight L?1). 4. We conclude that age‐0 yellow perch are capable of reducing Daphnia biomass prior to the arrival of age‐0 bluegill, ultimately slowing bluegill growth. Thus, priority effects favour age‐0 yellow perch when competing with age‐0 bluegill for Daphnia. However, these effects may be minimised if there is a shorter time between hatching of the two species, higher Daphnia spp. densities or lower age‐0 yellow perch densities.  相似文献   

16.
Larvae of the nematode Raphidascaris acus were found free or encapsulated in the liver of yellow perch. Blood vessels were distorted or destroyed during larval migrations and larvae were eventually encapsulated in a thick-walled whitish nodule. Successful walling-off of the parasite resulted in the formation of a collagenous nodule and a complete loss of the worm. No mortality of perch was associated with larval R. acus but the introduction of susceptible fishes into a lake harboring this parasite may be important in some stocking programs.  相似文献   

17.
Annual changes in the population size of the metacercariae of Tylodelphys podicipina in the eyes of perch in a small eutrophic lake were studied over ten years by following changes in prevalence, abundance and overdispersion of parasites throughout the life of each year class of fish. The population increased rapidly in the first two years after its introduction to the lake, but for the next six years fluctuated within very narrowly constrained limits before declining as a result of a catastrophic decline in the perch population. No evidence of parasite-induced host mortality was found: the decline in parasite abundance throughout the life of each year class was due to density-independent parasite mortality within the fish as a result of natural variation in the life span of the metacercariae. Levels of infection in the first year of a year class were determined principally by transmission processes, as transmission could only occur over a very brief period when release of cercariae from parent generation snails coincided with the presence of perch fry. Transmission appeared to be density-independent, and infection levels in perch to be determined by the dimensions of the transmission' window' and subsequently modified by parasite mortality. No evidence of host responses or any other regulatory factor of fish origin was found, and the infrapopulations in perch appear to be non-equilibrial and unstable. Although the possibility of regulatory processes acting on infrapopulations of the parasite in other hosts remains, the importance of transmission windows in determining infrapopulation levels in fish is emphasized.  相似文献   

18.
Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosystems have been hypothesized to benefit survival of fish during early life stages by increasing food availability and (or) reducing vulnerability to visual predators. However, evidence that river plumes truly benefit the recruitment process remains meager for both freshwater and marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch (Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative larval source populations established that recruitment of larvae was higher from the turbid Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed enhance survival of fish larvae to recruited life stages, and also demonstrate how novel population genetic analyses of early life stages can contribute to determining critical early life stage processes in the fish recruitment process.  相似文献   

19.
Crustaceans are second intermediate hosts to several microphallid species (Trematoda). Some of these parasites are potentially pathogenic or manipulative. A laboratory experiment was performed to assess the impact of microphallids on the survival, growth and fecundity of Cyathura carinata, a protogynous hermaphroditic isopod, widespread within European estuaries. For nearly 12 weeks, experimental populations of infected and non-infected isopods were kept at 25 °C. C. carinata carrying microphallid cysts showed higher mortality rates than non-infected specimens and were not able to produce embryos. The reduced fecundity of infected isopods could be caused by parasite-induced castration and/or by mating failure due to behavioural modifications in one of the sexes. It might also be associated with lower growth rates and lower moulting frequencies, since infected C. carinata were significantly smaller than the non-infected after 9 weeks. This may imply a setback for the isopods to achieve sexual maturity (which may also affect the population sex ratio) and for females to lay their eggs in the marsupia. Regardless of the mechanisms involved, microphallids may have severe consequences for their host populations, through negative effects on survival, growth and fecundity. For species with direct development, such as C. carinata, parasite-induced reproduction failure may contribute to temporal fluctuations of abundance. Based on the present results, it is recommended to include parasites as an important factor influencing host populations from shallow-water ecosystems.  相似文献   

20.
Martti Rask 《Hydrobiologia》1983,101(1-2):139-143
Growth patterns and food composition of perch, Perca fluviatilis L., was studied in two small forest lake populations in southern Finland. Size and morphometry of the lakes and physical and chemical properties of water are similar. There is a clear difference in the growth rates of perch between the two lakes. The difference in growth is highly significant in all age groups. In the first lake there is a perch population of 2 000 (1750 ind · ha–1) adult fishes. In the second lake there is a small population of pike, that keeps the perch population down: 200 adult perch (530 ind · ha-1). The main food items of perch are crustacean zooplankton, Asellus aquaticus L. and Trichoptera larvae in the first lake and zooplankton, Odonata larvae, Ephemeroptera larvae and Heteroptera in the second.It is concluded that the main reason for the growth difference of studied perch populations is the different population density. There are also differences in species composition of bottom fauna of the lakes, maybe owing to the floating Sphagnum peat moss vegetation in the second lake. This can also affect the growth difference between the two populations of perch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号